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Abstract 

The Central Limit Theorem (CLT) states that regardless of whether a population distribution is Normal, as sample 
size increases, its sample means distribution will converge to Normality (i.e. fits a bell-shaped curve). Typically, a 
sample size of 30 is considered adequate for the CLT to apply. However, there is one caveat: the speed of convergence 
depends on both the sample size and the shape of the population distribution. This study seeks to gauge a “sample size 
threshold” at which the sample means distribution converges to Normality for four population distributions: uniform, 
exponential, logistic, and Normal. Monte Carlo distributions generating random samples of sample means for each 
are first displayed using Normal quantile-quantile (q-q) plots. These evaluate how close the sampling distribution of 
the sample means is to the Normal distribution. The Shapiro-Wilk test, a hypothesis test that assumes the sample 
means distribution is Normal, is then employed to estimate the sample-size threshold at which the Normality null 
hypothesis of the sample means distribution is not rejected. Using a conventional significance level 𝛼 = 0.05 
(indicating a 95% confidence in a correct hypothesis test conclusion) any sample means distribution with a resulting 
p-value of above 0.05 is considered adequately Normal. Ultimately, asymmetrical distributions such as the exponential 
were found to require substantially larger sample sizes for convergence — about 160 in comparison to 10 for the 
uniform distribution, 3 for the logistic, and 1 for the Normal. 
 
Keywords: Central limit theorem, Shapiro-Wilk test, Population distributions, Speed of convergence, Monte Carlo 
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1. Introduction 
 

Throughout the 18th century, mathematicians suspected that at a certain point, sample means distributions would 
always be Normal, regardless of the population distribution. This was confirmed in 1812, when Laplace proved the 
Central Limit Theorem (CLT), which states that the sampling distribution for any mean becomes more nearly Normal 
as the sample size increases. That is, the sampling distribution of a sample mean with sample size 𝑛 from a population 
with mean 𝜇 and standard deviation 𝜎 will have a sampling distribution mean of 𝜇 and a standard deviation of 𝜎/𝜇. 
Since then, the CLT has become one of the most fundamental theories in modern statistics, analyzing sample data to 
make predictions about larger populations, from election polls to traffic flow optimization to medical research 
(Asokan, 2023). 

Yet while the population distribution itself does not affect the CLT’s application to it, its shape and symmetry 
does impact the speed at which the CLT begins to apply. The more skewed the population distribution is, the larger 
the sample size needs to be for the sampling distribution to reach Normality (Yates et al., 2011). A Normal population 
distribution, for example, would lead to a Normal sample means distribution almost immediately, as would a logistic 
distribution (which, similar to the Normal distribution, is unimodal and symmetric about 0 but has a slightly greater 
variance). On the other hand, population distributions without an obvious mode such as the uniform distribution, or 
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those strongly skewed such as the exponential distribution, will require a larger sample size to display the 
characteristics of the CLT. 

While the CLT is widely used today across disciplines from economics to medicine and its properties regarding 
various population distributions are well-known, the exact “threshold” at which the sample size becomes large enough 
for the CLT to apply remains a mystery. Many cite 30 as the sample size at which the sample means distribution 
becomes Normal enough; however, depending on the skewness of the population distribution, a much larger sample 
size may be required (Yates et al., 2011). 

This study will not only showcase the properties of the CLT graphically but also measure a general sample size 
at which the sample means distribution becomes Normal for each of four population distributions: uniform, 
exponential, logistic, and Normal. If the CLT holds true, the sample size threshold should increase in the order of 
Normal, logistic, uniform, and exponential based on the modes and skewness of each population distribution. This 
study will examine the above hypothesis. 
 
2. Materials and Methods 
 

For each of the four population distributions, a Monte Carlo distribution of the sample means is generated for 
different sample sizes. 

Four cases of fixed sample size (𝑛 = 2, 5, 35, 100) are simulated to provide an accessible visual comparison of the 
sample means distribution for the population distributions as the sample size varies. The population distribution 
histogram, the sample means’ histogram, and the Normal q-q plot of the sample means are displayed for each sample 
size to present said comparison. The four sample sizes were chosen to range from small to moderate values, illustrating 
directly how the convergence of the sample means distribution varies by population distribution. 

For each case, the Monte Carlo simulation is repeated 5000 times. This number was chosen as a modest size to 
demonstrate the general properties of the convergence. Larger Monte Carlo sample would confirm the findings 
detailed below with more precise histograms of the sample mean distributions.  

Normal q-q plots are constructed using the qqnorm function in R. They evaluate how close the sampling 
distribution of the sample means is to the Normal distribution for each population distribution. The x-axis of a Normal 
q-q plot consists of the theoretical quantiles, or the expected value of the order statistics from a sample of size 𝑛 from 
a standard Normal distribution. The y-axis is formed by the actual order statistics of the sample. A sample close to a 
Normal distribution with mean 𝜇 and standard deviation 𝜏 will follow close to a straight line with y-intercept = 𝜇 and 
slope = 𝜏. 

The dependence of the speed of convergence for each population distribution is then estimated more carefully 
with the Shapiro-Wilk Normality Test. The null hypothesis of this test is that the sample means distribution is Normal. 
The conventional significance level 𝛼 = 0.05 used in this study suggests that 5% of tests will reject the null hypothesis 
despite it being true — a Type I error, otherwise known as a “false positive” (Kwak, 2023). 𝛼 = 0.05 is widely used 
as it offers a compromise between the high risk of “false positives” associated with larger significance levels 𝛼 > 0.10, 
and the necessity of running a very large number of tests to detect meaningful effects with smaller significance levels 
𝛼 ≤ 0.01. 

If the Shapiro-Wilk test returns a p-value higher than 0.05, then the null hypothesis is not rejected, and the sample 
means distribution cannot be considered to be not Normal. For the sake of simplicity, this study will consider such a 
result to be Normal, to a statistically significant degree. 

The dependence of p-values of the Shapiro-Wilk test on the fixed sample size for the mean is analyzed for each 
population distribution. Specifically, this study seeks to determine the sample size at which the theoretical Shapiro-
Wilk test is higher than 0.05. 

The results in section 3 show how the required sample sizes vary with the population distribution. Normal 
population distribution will serve as a control showing that the test performs as expected, for which the resulting 
sample size should be 1. 
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3. Results 
 
3.1 Uniform Distribution 
 

A sample size of 2 is selected to begin the study of CLT 
for each population distribution to investigate how it applies to 
very small sample sizes. 

For a sample of size 2, the sample means histogram 
(Figure 1 top right) more closely follows a triangular 
distribution than a Normal distribution, meaning the peak 
value decreases linearly to the tails. This causes the q-q plot 
(Figure 1 bottom left) to depart from the straight line 
associated with Normality. Specifically, the q-q plot deviates 
from a Normal distribution at the extremes of the sample 
quantiles (above the line at the lower extreme and below the 
line at the upper extreme). At this sample size, the Shapiro-
Wilk Test returns a p-value of less than 2.2e-16. 

At a sample size of 5, the sample means histogram (Figure 
2 top right) shows a slightly closer fit to a Normal distribution. 
The q-q plot (Figure 2 bottom left) has a straight alignment to 

the line of best fit at the extremes, with deviations less 
curved than the previous graph for sample size 2 
(Figure 1 bottom left). The Shapiro-Wilk Test returns a 
p-value of 0.001862. 

At sample sizes of 35 and 100, the sample means 
histograms for a uniform distribution begin to closely 
resemble the bell shape of a Normal distribution, as 
shown in the second and fourth graphs in the first row 
of Figure 3. The q-q plots, too, displays almost perfect 
fits to Normal lines, particularly at the tails (Figure 3 
bottom row). The Shapiro-Wilk p-value for both 

sample sizes are above the confidence level at 0.116 and 0.3242. The following Shapiro-Wilk graphs gauges a specific 
number at which the Normal distribution begins to apply. 

 
 

  
Figure 3. Uniform distribution plots at sample sizes of 35 and 100 (from left to right). 

 

 
Figure 1. Uniform distribution at sample size of 2. Top 
left: population distribution histogram, top right: 
sample means distribution histogram, bottom left: q-q 
plot of theoretical versus sample quantiles. 

 
Figure 2. Uniform distribution plots at sample size of 5. 
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When the sample size of the sample 
means distribution is large enough for the 
CLT to apply, the Shapiro-Wilk test should 
return p-values equally distributed from 0 to 
1, i.e. the graph to the left in Figure 4 should 
show points scattered throughout the range of 
y-values for each x-value. Visually, there is a 
cluster of points to the bottom left of the plot 
with y-values below 0.05 and x-values 
ranging from about 0 to about 8. 

The logarithmic plot to the right of Figure 
4 provides a more accurate measure. The blue 

line is a best-fit line of the Shapiro-Wilk p-values while the red line is the threshold p-value of 0.05, which was 
established in the introduction as the conventional significance level. The green line traces a p-value of 0.5 for 
reference. The intersection of the blue and red lines at an x-value of about 10 is 
the sample size above which the sampling means distribution for a uniform 
population distribution begins to become Normal. 

This is further corroborated by the p-values obtained at each of the four tested 
sample sizes displayed in Table 1 above. At sample sizes of 2 and 3, the p-values 
are less than the threshold of 0.05 so that the null hypothesis is rejected and the 
conclusion is that the sample means distributions fails to be Normal. At a sample 
size of 35, the p-value was 0.116, which is greater than 0.05, indicating that the threshold sample size for the uniform 
distribution must be between 5 and 35. Therefore the CLT threshold is determined to be about 10 for the uniform 
distribution. 
 
3.2 Exponential Distribution 
 

Next, the CLT’s relevancy to different population distributions is examined, beginnings with the exponential 
distribution. Again, the sample sizes are fixed at 2, 5, 35, and 100. 
 

  
Figure 5. Exponential distribution plots at a sample size of 2. Figure 6. Exponential distribution plots at a sample size of 5. 

 
The histograms for both the population and sample means distributions in the top row of Figure 5 are heavily 

skewed to the right, as expected according to the exponential distribution. These, along with the curved q-q plot in the 
bottom left of Figure 5, are evidence that a sample size of 2 is not nearly adequate for the CLT to apply for the 
exponential distribution. The corresponding p-value for the Shapiro-Wilk test is less than 2.2e-16. 

While the increased sample size has decreased the skew of the population and sample means distributions (Figure 
6 top row) as well as the curve of the q-q plot (Figure 6 bottom left), all three plots are nowhere near the shapes 
necessary to conclude a Normal distribution. Indeed, the Shapiro-Wilk p-value remains below 2.2e-16. 

 
Figure 4. Visualizations of the Shapiro-Wilk test for the uniform 
distribution. Left: p-values of the Shapiro-Wilk hypothesis test plotted 
against the sample sizes, right: p-values graph plotted on a logarithmic 
scale. 

Table 1. Summary of p-values for 
the uniform distribution. 

Sample Size 𝒏 p-value 
2 <2.2e-16 
3 0.001862 
5 0.116 

100 0.3242 
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Figure 7. Exponential distribution plots at a sample size of 35. Figure 8. Exponential distribution plots at a sample size of 

100. 
 

At a sample size of 35, the sample means histogram to the top right of Figure 7 begins to follow the bell curve of 
a Normal distribution but retains a slight skew to the right. The q-q plot to the bottom left of Figure 7, while less 
curved, continues to have positive residuals at the tails. The Shapiro-Wilk p-value is still incredibly small at 9.85e-13. 

The CLT begins to come into effect at a 
sample size of 100. The sample means 
histogram (Figure 8, top right) no longer 
shows skew and the q-q plot is linear (Figure 
8, bottom left). However, the Shapiro-Wilk p-
value is found to be 1.131e-05. 

The p-values for the Shapiro-Wilk test 
slowly rise to become scattered throughout the 
range of y-values 0 to 1, after an x-value of 
about 175 as shown in Figure 9 (left). A more 
accurate number of 160 is gauged at the 
intersection of the blue and red lines in Figure 9 (right). Thus, at a sample size of about 160, the Shapiro-Wilk test 
begins to consistently return p-values above 0.05, where the null hypothesis would fail to be rejected and the CLT 

would be concluded to apply. 
This number of 160 matches the p-value data shown in Table 2 as well — 

the Shapiro-Wilk test at a sample size of 100 (the greatest sample size tested) 
returned 1.131e-05, much less than 0.05, and since 160 is greater than 100, it 
makes sense for it to be the 
threshold value for the 
exponential distribution. 

3.3 Logistic Distribution 
 

The study continues with the logistic distribution, which is a 
population distribution nearly identical to the Normal distribution but 
with more area under the tails. The same four sample sizes are used. 

At a sample size of 2, the sample means histogram (Figure 10, 
top right) already displays a relatively Normal distribution with a 
very slight skew to the left equivalent to the slight deviation from the 
tails of the blue Normal line in the q-q plot (Figure 10, bottom left). 
The p-value for the Shapiro-Wilk test at this sample size is 3.564e-
05. 

 
Figure 9. Visualizations of the Shapiro-Wilk test for the exponential 
distribution. 

Table 2. Summary of p-values for 
the exponential distribution. 

Sample Size 𝒏 p-value 
2 <2.2e-16 
3 <2.2e-16 
5 9.85e-13 

100 1.131e-05 

 
Figure 10. Logistic distribution plots at a sample 
size of 2. 
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Figure 11. Logistic distribution plots at sample sizes of 5, 35, and 100 (from top left to bottom, clockwise). 
 

All three sample sizes display 
corresponding sample means histograms with 
almost exactly the desired bell shape of a 
Normal distribution (Figure 11, top right of 
each trio of plots). Their Shapiro-Wilk p-
values are all above 0.05 at 0.4387, 0.3066, 
and 0.9163, respectively. 

The graph to the left of Figure 12 shows 
roughly uniformly scattered p-values 
throughout sample sizes 3 to 150, though the 
p-value data points remain consistently at or 

below 
about 0.625 for sample sizes from 3 to about 25. Regardless, since 0.625 is greater 
than 0.05 the null hypothesis continues to be rejected. Following this logic, the lack 
of intersection between the blue and red lines in the logarithmic plot to the right of 
Figure 12 means that for every sample size 𝑥, the blue best fit line remains above 
the red threshold line. 

Table 3 demonstrates that the p-value is less than 0.05 for a sample size of 2 
but greater than 0.05 for a sample size of 5 and beyond. The sample size threshold for the logistic distribution can then 
be safely estimated to be 3, the lowest possible value for the Shapiro-Wilk Test. 

 

 
Figure 12. Visualizations of the Shapiro-Wilk test for the logistic 
distribution. 

Table 3. Summary of p-values for 
the logistic distribution. 

Sample Size 𝒏 p-value 
2 3.564e-05 
3 0.4387 
5 0.3066 

100 0.9163 
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3.4 Normal Distribution 
 

To conclude, Monte Carlo simulations of the Normal 
distribution will act as a control in this test of the population 
distribution’s effect on the CLT. The same four sample sizes are 
used but with a size of 1 instead of 2. 

As expected, the sample means histogram to the top right of 
Figure 13 display almost perfectly the bell curve of the Normal 
distribution and the q-q plot to the bottom left of Figure 13 almost 
perfectly the straight, positively sloped line. The p-value for the 
Shapiro-Wilk test further suggests a Normal distribution at 
0.3352. 

 
 
 

 

 
Figure 14. Normal distribution plots at sample sizes of 5, 35, 100 (from top left to bottom, clockwise). 

 
At each sample size, both the sample means histograms and q-q plots (top right and bottom left of each trio of 

plots in Figure 14) display the parameters of a Normal distribution. The p-values for each are 0.8857, 0.8931, and 
0.799, respectively. 

The Shapiro-Wilk plot to the left of Figure 15 seems to be uniformly scattered throughout so that the p-values 
range evenly from 0 to 1 at all sample sizes 1 to 200. The logarithmic plot, too, displays a blue best fit line far above 
the red threshold line for all sample sizes 𝑥 (Figure 15, right). 

These observations are confirmed in Table 4, which shows that the p-values are greater than 0.05 for all four 

 
Figure 13. Normal distribution plots at a 
sample size of 1. 
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sample sizes tested. Thus, for a Normally distributed population, the sample means distributions is Normal for all 
sample sizes from 1 to infinity. 

 
 

 
 
 
 
 
 
 
 

 
 
 

4. Discussion 
 

As shown in Table 5 below, the estimated CLT 
thresholds for the uniform, exponential, and logistic 
population distributions, respectively, were: 10, 160, 
and 3. 

Upon reaching these numbers, the Shapiro-Wilk 
hypothesis test returned p-values larger than the 
conventional significance level of 0.05 on average. For 
the Normal distribution, the effects of the CLT were shown for all sample sizes 1 to infinity — trivially, a Normal 
population distribution corresponds to a Normal sample means distribution regardless of the sample size. However, 
while the uniform and logistic distributions showed close to Normal sample mean distributions even at a sample size 
of 2, the exponential distribution was largely skewed until the sample size increased to the estimated threshold. 

This is because speed of convergence for the CLT depends on the shape of the initial population distributions. 
For symmetrical distributions like the uniform and logistic, the CLT applies well very quickly, even with sample sizes 
as small as 5. For asymmetrical distributions such as the exponential, however, larger sample sizes are required for the 
CLT to apply. The speed of convergence is thus slower when the population distribution is asymmetrical. Instead of 
the generalized number 30, these new thresholds provide more accurate indicators of the sample sizes at which 
population distributions converge to Normality under the CLT. 

The spread of sample quantiles in each q-q plot can also indicate the fit to a Normal distribution as smaller spreads 
closer to the standard Normal distribution mean of 0.5 imply a smaller standard deviation for the sample mean 
distribution. So a smaller spread of sample quantiles corresponds with a larger sample size, which typically guarantees 
a Normal distribution. 
 
5. Conclusion 
 

This study confirmed the hypothesis that the CLT relies on both the sample size and the shape of the population 
distribution. The findings also contrasted with the common advice that a sample size of 30 is sufficient for population 
distributions that are not heavily skewed or heavy-tailed. 

Rather than using a sample size of 30 as a “rule of thumb,” investigations depending on the CLT for the sample 
means distribution to converge to Normality can now utilize a more precise number based on the sample size 
thresholds provided in this study. A sample size of 3 when applying the CLT to logistic population distributions, for 
example, improves efficiency tenfold when compared to the typical 30. Vice versa, asymmetrical population 
distributions such as the exponential will require sample sizes in excess of 160 for the CLT to apply — sample sizes 
of 30 would lead to heavily skewed results. 

While the sample size thresholds found are rough estimates, they can be applied to real-world hypothesis testing, 

 
Figure 15. Visualizations of the Shapiro-Wilk test for the Normal 
distribution. 

Table 4. Summary of p-values for 
the Normal distribution. 

Sample Size 𝒏 p-value 
1 0.3352 
3 0.8857 
5 0.8931 

100 0.799 

Table 5. Summary of sample size thresholds for each 
population distribution tested. 

Population Distribution Sample Size Threshold 
Uniform 10 

Exponential 160 
Logistic 3 

Normal (control) 1 
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enhancing both efficiency in simulation and accuracy in result. With these thresholds, statisticians can now more 
effectively leverage the advantages of the CLT and cementing its place as a fundamental tool in modern data analysis 
and predictive modeling. 
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