
Vol. 2024 (7) 252 – 257 
ISSN 2688-3651 [online] 

 252 

 

Understanding an Extrapolation-based Lossy Compression                          
for Floating-Point Scientific Data 

Michael Middlezong,1 * 

1Bergen County Academies, Hackensack, NJ, USA 
*Corresponding Author: mmiddlezong@gmail.com 

 
Advisor: Dr. Qing Liu, qing.liu@njit.edu 

 
Received October 25, 2023; Revised March 29, 2024; Accepted, May 2, 2024 

 
Abstract 

Large-scale scientific instruments generate increasingly large amounts for data analysis. Data compression can reduce 
the data cost by reducing the size of data saved on disks. This paper explores an extrapolation-based compression 
algorithm commonly used by many state-of-the-art compressors, investigating its performance. The paper develops 
two extrapolation schemes in C++, linear and piecewise extrapolation, and evaluates their performance on three real 
datasets. The key finding of this paper is that extrapolation effectively exposes data redundancy, which means data 
can be better compressed further. However, the best extrapolation scheme to use depends on data characteristics and 
needs to be chosen carefully to achieve the best performance. 
 
Keywords: Lossy compression, Extrapolation, Data management 
 
1. Introduction 
 

Large-scale scientific instruments (e.g., supercomputers running calculations across many compute nodes or 
experimental facilities with high-fidelity sensors) can generate large amounts of data in the pursuit of knowledge. This 
data often needs to be transported to file systems for long-term storage and later retrieved quickly so that data analysis 
can be performed in a timely fashion. As compute increases and scientific instruments become more advanced, data 
input/output (I/O) becomes one of the biggest bottlenecks in end-to-end knowledge discovery. For this reason, research 
communities have recently developed new data reduction techniques to reduce the amount of data that must be 
transported to file systems. For example, SZ (Di & Cappello, 2016) uses extrapolation and regression to perform best- 
fit compression, while MGARD (Chen et al., 2021) uses interpolation along with an orthogonal projection to smooth 
out the coefficients. Nevertheless, there has been a lack of in-depth study of the design space for 
interpolation/extrapolation in compression, and more importantly how different schemes can affect downstream 
operations in compression. For example, in MGARD, only a multilinear interpolation is implemented, and other 
interpolation schemes have not been further implemented and evaluated. A suboptimal extrapolation will not fully 
expose the redundancy in data and will affect the effectiveness of the backend entropy encoder, which is Huffman 
encoding in MGARD. 

The idea of compressing floating-point data is to leverage the local smoothness in data. The method employed is 
to use a form of prediction to transform data to another form that is more compressible. When data points are predicted 
from earlier ones, it is called extrapolation. This work aims to study the critical component of extrapolation in 
compression and understand its effectiveness in smoothing out the data. The defined research objectives are: 

• To evaluate the effectiveness of extrapolation in lossy compression. 
• To evaluate the effectiveness of different types of extrapolation schemes. 
The hypothesis is that extrapolation will effectively expose the redundancy of a dataset and result in higher 

compression ratios when compared to a compression algorithm without any prediction. In addition, different methods 



Vol. 2024 (7) 252 – 257 
ISSN 2688-3651 [online] 

 253 

𝑖
+2 

𝑖
+2 

of extrapolation will have varying effectiveness across different datasets. 
The following subsections aim to provide a brief overview of the technical background necessary for the rest of 

this paper. 
 

1.1 Extrapolation 
 

Extrapolation is the prediction of unknown values based on other known values. An input dataset can be 
represented by a sequence of 1D floating-point values. Given two adjacent values 𝑥𝑖 and 𝑥𝑖+1 in a sequence, linear 
extrapolation predicts the value for 𝑥𝑖+2, denoted as 𝑥′i+2, as follows: 

𝑥!"#$ =	𝑥!"% +	(𝑥!"% −	𝑥!).  

Piecewise extrapolation is more naive and predicts the next value as being the current value. Given 𝑥𝑖, the next 
term is predicted as such: 

𝑥!"%$ =	𝑥!.  

Overall, the goal of extrapolation is to minimize the difference between the predicted value and the actual value. 
During compression, the differences, instead of the actual values, are stored, and intuitively they are more 
compressible than the original values. For decompression, the same extrapolation is performed, and the stored 
difference is added to recover the original value. 

Below, the process is described using linear extrapolation. If one would like to compress input data points 
𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2, one can extrapolate 𝑥𝑖+2 based on the previous two values as follows: 

𝑥!"#$ =	𝑥!"% +	(𝑥!"% −	𝑥!).  

Then, it suffices to store (and compress) the current term’s difference ∆!"#=	𝑥!"# −	𝑥!"#$ .This is because in 
the reconstruction step, a value for 𝑥𝑖+2 can be obtained by adding on the difference: 

𝑥!"# = 𝑥!"#$ +	∆!"#	= 	 𝑥!"% +	(𝑥!"% −	𝑥!) +	∆!"#.  

Therefore, given the data points 𝑥𝑖 and 𝑥𝑖+1, it is sufficient to store (and compress) Δ𝑖+2 instead of 𝑥𝑖+2. 
Compressing the difference instead of the data point itself reduces the magnitude of the values to be compressed 
(assuming the extrapolation can predict the next value well). This makes it more likely that values are close to each 
other. This will increase the redundancy in the data after the quantization step (described next), leading to a higher 
compression ratio. 

 
1.2 Quantization 
 

The purpose of quantization is to convert the output from the extrapolation step into integers, as known as 
quantization levels, so that those values that are close to each other can be represented by the same level. As such, the 
output of quantization can be well compressed using Huffman encoding to remove the redundancy. However, 
information loss will be introduced in this step. To control the information loss, the user can set the maximum allowed 
relative error (also called the relative error bound), denoted as 𝑟, to ensure values after decompression are within a 
certain range from the original values. 

The relative error is a fraction of the range of the data. The range 𝑅 of a sequence of values {𝑥𝑖} is the minimum 
subtracted from the maximum: 

R = max{𝑥𝑖} − min{𝑥𝑖} 

From this, the algorithm calculates the absolute error bound, denoted as 𝑒, such that values within 𝑒 of the original 
values satisfy the relative error bound: 

𝑒 = rR 



Vol. 2024 (7) 252 – 257 
ISSN 2688-3651 [online] 

 254 

During quantization, a floating-point number 𝑥 is mapped to an integer 𝑛 according to the following function: 

𝑛 = 𝑟𝑜𝑢𝑛𝑑 0
𝑥
2𝑒2 

Using this formula, values that are close to each other get mapped to the same integer. More precisely, the set of 
floating-point values that could potentially be mapped to the integer 𝑛 is the interval [2𝑒𝑛 − 𝑒, 2𝑒𝑛 + 𝑒). During 
decompression, the following function is used to map an integer 𝑛 to a quantized floating-point value denoted as 𝑥′ 
such that |𝑥′ − 𝑥| ≤ 𝑒 always holds: 

𝑥′ = 2en 

Therefore, this quantization process ensures that the absolute error bound 𝑒 is respected, which in turn implies 
that the relative error bound is also respected. 

 
2. Methods 

 
Our analysis uses the following compression algorithm. As 

referenced in Figure 1, our implementation of Huffman encoding 
takes in a vector of integers as input. Then, a frequency map is 
created from the vector. Using the frequency map, the algorithm 
generates a Huffman tree by first placing every (integer, frequency) 
pair into a priority queue sorted by frequency in ascending order. 
Then, until there is only one element left in the priority queue, the 
following process is repeated. Two elements are dequeued and a 
binary tree is created with the two dequeued elements as children. 
The new tree is then inserted back into the priority queue, with its 
frequency being the sum of the two frequencies of the children. The 
remaining element is the final Huffman tree. This Huffman tree can 
be traversed to generate a code table that maps each unique integer 
to a string of 0s and 1s. Using the code table, the original vector of 
integers is encoded into a compressed, binary format and saved on 
disk, along with a buffer to store the Huffman tree for 
decompression. The time complexity of Huffman encoding is 𝑂(𝑛 
𝑙𝑜𝑔 𝑛), where 𝑛 is the length of the input vector (Morris, 1998). In 
practice, compression throughput depends more on factors such as 
the relative error bound and data characteristics. 

Decompression (see Figure 1) is the reverse of compression. 
First, Huffman decoding is used to retrieve the original vector of 
integers. Huffman decoding goes through the encoded bits and 
simultaneously traverses the Huffman tree until reaching a leaf node which represents an integer. This repeats until the 
encoded bits are exhausted. 

After retrieving the original vector of integers, each integer is converted back into a floating-point value as 
described in section 1.2. The floating-point value will be quantized and not exact. The floating-point value represents 
the error between the extrapolated value and the actual value. Therefore, the final reconstruction step is to extrapolate 
a value based on previously decompressed values and add the difference to the extrapolated value. 

 
2.1 Experiment Details 
 

For each compression trial, two important metrics were measured: 
• Compression ratio: refers to how much the data was compressed by. It is calculated by dividing the original 

 
Figure 1. This diagram illustrates the 
process of compressing and decompressing 
datasets used in this paper. The shaded 
gray boxes contain steps that are repeated 
for every data point. 



Vol. 2024 (7) 252 – 257 
ISSN 2688-3651 [online] 

 255 

file size by the compressed file size. 
• Throughput: the speed at which compression/decompression occurs, measured in megabytes per second. 

The trials varied in the dataset used, relative error bound, and extrapolation scheme. As seen in the Results 
section, only one variable was changed at a time to ensure causality. 

 
2.2 Setup 
 

The tests were run on a Windows 11 PC (Version 22H2, OS Build 22621.2134) with an Intel Core i7-10700K 
CPU, 32 GB of memory, and a 1 TB NVMe SSD. The tests were run using Windows Subsystem for Linux (WSL) 
Version 2 with Ubuntu 22.04. The datasets used in the evaluation are from SDRBench (Zhao et al., 2020). All the 
datasets used consist of single-precision little-endian floating-point values. Listed are some characteristics of the three 
datasets used: 

1. The CESM-ATM dataset consists of 79 fields of 2D climate data with dimensions 1800x3600. Each field is 
compressed separately in this work. 

2. The EXAALT dataset consists of 6 fields of quantities from a molecular dynamics simulation. 
3. The dataset of Hurricane ISABEL, or ISABEL for short, consists of 13 fields of 3D weather data with 

dimensions of 100x500x500. 
This work is implemented in C++ and the source code is provided on GitHub (Middlezong, 2023). 

 
3. Results 

 
3.1  Performance Evaluation 
 

Figure 2 highlights the impact of extrapolation on the 
compression ratio when compared to no extrapolation. For both 
datasets shown in the figure, linear extrapolation results in a 
significantly higher compression ratio. In particular, the CESM-
ATM dataset shows a nearly 3x higher compression ratio with 
linear extrapolation compared to no extrapolation. By leveraging 
extrapolation, one can achieve a remarkable reduction in data size. 

Figure 3 shows the compression ratio and 
throughput vs. the relative error bound for linear and 
piecewise extrapolation schemes, respectively. As 
the error bound gets looser, a greater compression 
ratio is achieved. This is because with a larger error 
bound, it is more likely for different data points to be 
mapped to the same integer in the quantization step. 
Then, these data points are more effectively 
compressed by the Huffman encoding. 
 

 
Figure 2. Compression ratio with linear 
extrapolation vs. with no extrapolation 
(only quantization) for CESM-ATM and 
ISABEL datasets, across different relative 
error bounds. The relative error bounds 
range from 10^(-6), the strictest bound, to 
10^(-2), the loosest bound. 

 
Figure 3. The left graph displays the compression ratio 
for the two extrapolation schemes at each relative error 
bound for all three datasets. The relative error bounds 
range from 10−6, the strictest bound, to 10−2, the loosest 
bound. The right graph displays the compression 
throughput (in MB/s). 



Vol. 2024 (7) 252 – 257 
ISSN 2688-3651 [online] 

 256 

It is worth noting that the EXAALT 
dataset achieved a lower compression ratio 
than the other two datasets. Figure 4 shows 
one characteristic difference between the 
EXAALT and CESM-ATM datasets. The 
data in CESM-ATM results in quantization 
levels that are smaller in magnitude. As each 
quantization level is an integer compressed 
with Huffman encoding, quantization levels 
that are closer to each other result in a higher 
compression ratio. This explains the higher 
compression ratio of CESM-ATM than 
EXAALT regardless of the extrapolation 
scheme. This also suggests that linear 
extrapolation predicts values of the 
EXAALT dataset poorly. 

Linear extrapolation is in general 
expected to perform better than piecewise extrapolation, because it uses more data points for prediction. However, in 

Figure 3, it is apparent that piecewise extrapolation leads to a 
greater compression ratio when compressing the EXAALT 
dataset. The data visualizations in Figure 5 attempt to explain 
why. The data in EXAALT appears much choppier than the data 
in CESM-ATM. In general, smoother data can be more easily 
predicted using linear extrapolation. However, choppier data 
cannot be predicted using linear extrapolation, because of the 
sharp changes between adjacent data points. Therefore, a more 
relaxed extrapolation scheme, such as piecewise extrapolation, 
will better predict data. This leads to a higher compression ratio 
using piecewise extrapolation than linear extrapolation for the 
EXAALT dataset. 
 
4.    Discussion 
 

Extrapolation can effectively compress data by mapping 
values that are close to each other to one quantization level, 
which can be well compressed using Huffman encoding. The 
extrapolation scheme to be used depends on the data 
characteristics and needs to be chosen carefully. Data 

visualization is one way of determining which extrapolation scheme is best for a particular dataset. In general, we 
expect that relatively smooth data can be better compressed using linear extrapolation. 

This research has a few limitations that are to be addressed in the future. The choice of extrapolation scheme 
(none, linear, or piecewise) does not include more advanced prediction schemes. Future research could investigate 
more advanced prediction schemes, including pointwise polynomial extrapolation, cubic spline interpolation, and 
Lorenzo prediction (Ibarria et al., 2003). These prediction schemes may be more effective at predicting certain types 
of data, leading to even higher compression ratios. 

In addition, the extrapolation schemes have only been tested on CPUs. Although this will not affect the results of 
compression ratio, the architecture has a significant impact on the compression throughput. Throughput is an important 
factor to consider in real-world data compression. While higher compression ratios are desirable in reducing costs of 
data transmission and storage, there is a tradeoff between compression throughput and ratio. More effective 

 

Figure 4. Distribution of quantization levels of the EXAALT and 
CESM-ATM datasets. They were created by taking a 
representative file of each dataset and storing the quantization 
levels calculated during compression using a linear extrapolation 
scheme (see section 2.2). These quantization levels were plotted 
in a histogram. The quantization level of a data point measures 
the difference between its actual value and the extrapolated value. 

 
Figure 5. Visualizations of the EXAALT and 
CESM-ATM datasets. They were created by 
taking a representative file of each dataset and 
normalizing and plotting the first 1000 data 
points of each. The data was normalized to 
have a minimum of 0.0 and maximum of 1.0. 



Vol. 2024 (7) 252 – 257 
ISSN 2688-3651 [online] 

 257 

extrapolation or prediction methods may have an undesirable computational performance. Emerging architectures 
such as GPUs, which heavily employ parallelization, can potentially resolve the issue. Thus, future research could 
incorporate emerging architectures, such as GPUs, and investigate the impact that different extrapolation schemes 
have on compression throughput. 
 
5. Conclusion 

 
This work investigated the use of extrapolation as a technique for lossy compression of floating-point scientific 

data. Two extrapolation schemes, linear and piecewise, were implemented and their performance was evaluated across 
three real-world datasets. The metrics of compression ratio and throughput were calculated for each compression trial. 
The key findings are: 

- Extrapolation effectively exposes data redundancy, leading to a better compression ratio. 
- The best choice of extrapolation scheme depends on the dataset. Particularly, smoother data is more fit to be 

predicted using linear extrapolation, while choppier data is better predicted using piecewise extrapolation. 
Thus, the extrapolation scheme must be chosen carefully depending on the data characteristics. Future research could 
incorporate more advanced prediction methods into the comparison and incorporate emerging architectures such as 
GPUs to further investigate compression throughput. 
 
Acknowledgements 
 

I would like to thank my mentor Professor Liu for guiding me through the research and writing process. This 
paper could not have been completed without his guidance. 
 
References 
 
Chen, J., et al. (2021). Accelerating multigrid-based hierarchical scientific data refactoring on GPUs. In 2021 IEEE 
International Parallel and Distributed Processing Symposium (IPDPS) (pp. 922-931). IEEE. 
https://doi.org/10.1109/IPDPS49936.2021.00095 
 
Di, S., & Cappello, F. (2016). Fast error-bounded lossy HPC data compression with SZ. In Proceedings of the 2016 
IEEE International Parallel and Distributed Processing Symposium (IPDPS) (pp. 730-739). IEEE. 
 
Ibarria, L., et al. (2003). Out-of-core compression and decompression of large n-dimensional scalar fields. 
Eurographics 2003, 22(3), 343–348. https://doi.org/10.1111/1467-8659.00681 
 
Middlezong, M. (2023). Understanding an Extrapolation-based Lossy Compression for Floating-point Scientific 
Data. GitHub. https://github.com/mmiddlezong/extrapolation-compression/tree/main 
 
Morris, J. (1998). Huffman Encoding. School of Computer Science - University of Auckland. 
https://www.cs.auckland.ac.nz/software/AlgAnim/huffman.html 
 
Zhao, K., et al. (2020). Scientific Data Reduction Benchmarks. SDRBench. https://sdrbench.github.io 

 


