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Abstract 

Since there is no cure for Parkinson’s it’s essential detecting the disease early and accurately. However, it’s extremely 
challenging because brain MRIs in the early stages looks normal to a human eye. Deep learning convolution neural 
network models using custom and transfer learning approaches were used to detect and classify Parkinson’s disease. 
MRI images were collected from Alzheimer's Disease Neuroimaging Initiative datasets for both Parkinson’s and 
control-normal classes. VGG16, ResNet-50 and DenseNet-169 base models were used for the transfer learning 
convolution neural network study. Transfer learning models VGG16, ResNet-50 and DenseNet-169 achieved score 
for accuracy and precision of (68, 77), (63, 64) and (81, 87) respectively but their performance was impacted by fewer 
number of datasets and class imbalances. Siamese neural networks which work well with fewer number of datasets 
was used in this study. For Siamese neural network, transfer learning approach was used via ResNet-50 for Parkinson’s 
disease classification. Siamese neural network model achieved on outstanding score for accuracy and precision of 
(99,99). Siamese neural network approach also detected and extracted the region of interest as the corpus callosum 
region. 
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1. Introduction 
 

One of the most common neurodegenerative diseases after Alzheimer's disease is Parkinson's disease (PD).  
Around 7-10 million people are suffering from this disease in the world and therefore research in this field is warranted 
(Mhyre et al., 2012 & Jose et al., 2010). As individuals age, the occurrence of Parkinson's disease rises, and it impacts 
approximately 1% of the population aged 60 and above. This neurodegenerative disorder is caused by insufficient 
production of specific neurotransmitters, such as dopaminergic neurons, in the brain (Chinta and Andersen, 2005). 
The resulting dopamine imbalance leads to motor dysfunction and tremors. Tremors, which initiate in a limb and 
eventually spread throughout the entire body, are a primary manifestation of Parkinson's Disease (Bhatia et al., 2018). 

It is crucial to differentiate PD progression from other conditions such as frontotemporal dementia (FTD), 
psychiatric disorders, vascular dementia, or Alzheimer's disease since their symptoms can be easily misdiagnosed in 
PD patients (Finger et al., 2016). Despite being a noninvasive imaging technology, Magnetic Resonance Imaging 
(MRI) has been rarely used in PD detection. However, recent advancements in MRI have made detection 
comparatively easier. Although experts have been utilizing MRI imaging to detect PD, it has become increasingly 
challenging for physicians as an MRI scan of the brain in the early stages may appear normal to the human eye. 
Misdiagnosing PD as healthy could lead to disease progression and difficulty in controlling it in patients. In recent 
years, researchers have been exploring new MRI techniques that may improve the accuracy of PD diagnosis. For 
example, diffusion tensor imaging (DTI) is a type of MRI that can detect changes in the white matter of the brain that 



Vol. 2024 (7) 266 – 272 
ISSN 2688-3651 [online] 

267 

may be associated with PD. Other techniques, such as functional MRI (fMRI), may help identify changes in brain 
activity patterns that are specific to PD. Despite these advances, however, MRI remains a challenging diagnostic tool 
for PD, particularly in its early stages (Pahuja et al., 2016). The corpus callosum is a thick bundle of nerve fibers that 
connects the two hemispheres of the brain, allowing them to communicate and send signals to each other. Notable 
volume loss occurs in the corpus callosum in PD, with specific neuroanatomic distributions in PDD and relationships 
of regional atrophy to different cognitive domains. Callosal volume loss may contribute to clinical manifestations of 
PD cognitive impairment (Goldman et al. (2017). 

Deep learning is a branch of machine learning that involves training artificial neural networks on vast data sets to 
tackle intricate problems. Various studies have employed convolutional neural network (CNN) models in deep 
learning to identify and categorize Parkinson's disease (PD) automatically using different network architectures 
(Alissa et al., 2022, Liu et al., 2018 & Jahan et al., 2021). The findings suggest that CNNs can enhance the learning 
process and deliver more accurate classification outcomes for diagnosing PD (Jindal and Tripathi, 2020). The study 
used MRI brain scans from PD patients and healthy controls to train the CNN and achieved an accuracy rate of over 
90% in detecting PD. The use of machine learning in detecting Parkinson's disease (PD) is limited by several 
challenges. Firstly, the scarcity of available MRI data for PD patients makes it challenging to apply machine learning 
accurately. Secondly, few studies have focused on identifying the region of interest (ROI), which is a critical factor in 
medical diagnosis (Mehmood et al., 2020). Accurately identifying the ROI can provide insight into the disease and 
improve model performance. Finally, the class imbalance is a significant issue in many studies. This occurs when one 
class has significantly more instances than other classes, leading to a misinterpretation of the model (Kanghan et al., 
2019). 

In this work, custom CNN model and a transfer learning approach were used with pre-trained VGG-16, ResNet-
50 and DenseNet-169 architectures for feature extraction to classify PD MRI images (Ganesh and Vanamu, 2022). 
The most popular publicly available database for MRI images is Open Access Series of Imaging Studies (OASIS) 
(Marcus et al., 2007), also called Kaggle databases. Siamese neural network (SNN) is a novel artificial neural network 
which compares two images and then separates all the images into sub-groups, which then separate into your actual 
classification groups eventually. In this study a transfer learning SNN model using ResNet-50 was also developed to 
efficiently classify MRI datasets with a smaller number of images. 

Research objectives in the study are to , to obtain a custom model with outstanding accuracy and precision for 
detecting PD using MRI images, compare various deep learning models against the custom model and identify ROI. 
Hypothesize is to develop a novel SNN model for accurately detecting PD using smaller MRI datasets compared to 
other custom and transfer learning CNN models. Additionally, prediction was that transfer learning CNN approach 
using DenseNet-169 would have better performance compared to VGG-16 and ResNet-50 because of its more layers. 
 
2. Materials and Methods 
 
2.1 Data acquisition and preprocessing 
 

Data from the Kaggle databases were fed into the model after data preprocessing. In the preprocessing step, all 
the images were resized to be consistent at 224 x 224 pixels to match the academic standard. The axial T1 star images 
of the axial brain MRI scans were used for Kaggle to classify the stage of the AD and to find the region of interest. 
The OASIS database, also called Kaggle, is freely available to the scientific community. Kaggle compiles a multi-
modal dataset generated by the Knight Alzheimer Disease Research Center (Knight ADRC) and its affiliated studies. 

The data augmentation was very crucial in this project as the dataset was much smaller than the Kaggle dataset, 
and only less than 170 PD images were available for training, consisting of five classes. Therefore, some augmentation 
techniques i.e., rotation, flipping etc. were used which helped the model to be more generalizable and reduce over-
fitting of the dataset.  
 
2.2 ML and neural networks terms 
 

The pre-trained models used in this study are VGG-16, ResNet-50 and DenseNet-169. The programming 
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language used in this study is Python with opensource library used to develop ML model and the computing platform 
used was NVIDIA GPU for high data processing. Accuracy shows how often a classification ML model is correct 
overall. Precision shows how often an ML model is correct when predicting the target class. Accuracy is a helpful 
metric when you deal with balanced classes and care about the overall model “correctness” and not the ability to 
predict a specific class, whereas precision is useful when you have “unbalanced” classes as in this study. 

An epoch indicates the number of passes of the training dataset the ML algorithm completes. Initially, a random 
kernel was used and the performance was low. The number of epochs is the number of times that the algorithm will 
work through the entire training dataset. One epoch means that each sample in the training dataset has had an 
opportunity to update the internal model parameters. The performance of the model stops improving because the 
model detection rate is not getting better. 

SNN consists of two identical sub-networks that are joined together at their output. The initialization for both the 
sub-networks involves the same weights and parameters. Parameter updating happens while training also gets shared 
across these networks. 
 
2.3 Reference transfer learning models 
 

Transfer learning is all about gaining insights by addressing a problem and leveraging the knowledge gained and 
its application on a problem that is similar in nature. For example, parts of knowledge gained in recognizing one kind 
of automobile can be applied for recognizing all kinds of similar vehicles. This kind of transfer of knowledge and 
repurposing saves us from reinventing the wheel and has the potential to significantly improve the efficiency of the 
target output. Several problems related to computations, data availability, and analytics have taken advantage of this 
transfer learning method. Particularly for image processing and identification, the transfer learning model can gain 
potential knowledge by analyzing an image, which can easily be applied to a wide range of datasets and classes. 

 
3. Results 
 
3.1 Architecture for the model 
 

A custom CNN model was developed for feature extraction and to classify PD MRI images. Transfer learning 
using well established existing pre-trained VGG-16, ResNet-50 and DenseNet-169 base models were also 
implemented in the image classification to extract the features and created a custom dense layer for classification of 
the stage of the PD. Model was tested using both Kaggle databases. 

Two classes of PD images were obtained using the Kaggle database, namely: control normal (healthy) and 
Parkinson’s disease images (Figure 1). A total of 177 images for PD and 487 images for normal (healthy) with a total 
of 654 images were obtained. The data was split into three 
sets: a training set consisting of 60% of the dataset (398 
images), a validation set consisting of 15% of the dataset 
(100 images), and a testing set consisting of 25% of the 
dataset (166 images). 106 images, 292 images for training, 
26 images, 74 images for validation and 44 images, 122 
images were used for testing for each of the classes PD 
and normal respectively for standard CNN models. Since 
the SNN uses a twin CNN model where pairs of images 
are compared all the images are used for training 
validation and testing. 
 
3.2 Test results for Custom CNN model 

 
A custom model was developed with 12 layers (6 layers of convolutions and 6 layers of max pooling) to train all 

the model. An epoch is a process of training the neural network with the training data for one-cycle. The number of  

 
Figure 1: Example of Kaggle MRI images for (a) 
Control normal (healthy) (b) Parkinson’s disease. 
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epochs is the number of times that the 
algorithm will work through the entire 
training dataset. The performance of the 
custom model was calculated across epochs 
as shown by the red line in the plot below 
(Figure 2). The validation accuracy for the 
custom model was 0.705, after 30 epochs. 
The model showed an increasing trend in 
performance until it reached their final 
values. The testing accuracy for the custom 
model was 0.71 based on 166 MRI test 
images calculated using the confusion 
matrix (Figure 3). The testing precision for 
the custom model came out low with 0.79. 
 
3.3 Test results for CNN transfer learning 
models 

 
A transfer learning approach was used 

to train all the reference models (VGG-16, 
ResNet-50 and DenseNet-169). The 
performance of the models was calculated 
across epochs using the custom dense layer 

developed (Figure 2). The validation accuracy for each of the models VGG-16, ResNet-50 and DenseNet-169 were 
0.7, 0.86, and 0.71 after 30 epochs, 
respectively. Both DenseNet-169 and 
VGG-16 showed an increasing trend 
in the accuracy until 10 epochs and 
then saturated. ResNet-50 showed 
increasing trend until 30 epochs and 
saturated after that. The testing 
accuracy for each of the models 
VGG-16, ResNet-50 and DenseNet-
169 were 0.68, 0.83, and 0.70, 
respectively, based on 166 MRI test 
images calculated using the confusion 
matrix (Figure 3). The testing 
precision for each of the models 
VGG-16, ResNet-50 and DenseNet-
169 were 0.77, 0.85, and 0.78, 
respectively. 
 
3.4 Test results for SNN model 

 
A SNN model was developed 

using transfer learning (ResNet-50 as 
a base model). The performance of 
the SNN model was calculated across 
epochs (Figure 4). The training 
accuracy for the SNN model 0.975 

 
Figure 2: Validation performance of the custom model and other 
transferring learning models (VGG-16, ResNet-50 and DenseNet-
169) across epochs. The validation accuracy for each of the model’s 
custom-CNN, VGG-16, ResNet-50 and DenseNet-169 were 0.705, 
0.7, 0.86, and 0.71 after 30 epochs, respectively. 

 
Figure 3 (a-d): Confusion matrix showing testing accuracy and precision 
performance of the custom model (a) and other transferring learning 
models, VGG-16 (b), ResNet-50 (c) and DenseNet-169 (d). The testing 
accuracy for each of the model’s custom-CNN model, VGG-16, ResNet-
50 and DenseNet-169 were 0.71, 0.68, 0.83, and 0.70, respectively, based 
on 166 MRI test images. The testing precision for each of the model’s 
custom-CNN model, VGG-16, ResNet-50 and DenseNet-169 were 0.79, 
0.77, 0.85, and 0.78, respectively. 
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after 15 epochs. SNN model showed an increasing trend in the accuracy until it reached its final values. The validation 
accuracy for the SNN model was 0.96, after 15 epochs. Similarly, the model showed an increasing trend in 
performance until it reached their final values. The testing accuracy for the SNN model was 0.991, based on 654 MRI 
test images calculated using the confusion matrix (Figure 5). The testing precision for the SNN model came out 
outstanding with 0.988. SNN model also determined the ROI to be the Corpus Callosum region on the brain axial 
MRI images (Figure 6).  

 

 
Figure 4: Validation performance of the SNN model across epochs. The training and validation accuracy 
for SNN model 0.975 and 0.96 respectively.  

 

  
Figure 5: Confusion matrix showing testing 
accuracy and precision performance of the SNN 
model. The testing accuracy and precision for the 
SNN model shows 0.991 and 0.988, respectively. 
 

Figure 6 (a): Region of interest (ROI) using Kaggle data 
showing the Corpus Callosum on the brain axial MRI 
images of the VGG-16 data. Red color shows the accurate 
location of the ROI. Figure 6 (b) on the right shows the 
image without the ROI and left shows with the ROI. 

 
4. Discussion 

 
In this work, custom CNN model was compared with the transfer learning CNN models for detection of PD using 

MRI images. Based on the testing dataset model performances, it can be concluded that the ResNet-50 model 
outperformed all the other models (custom, VGG-16 and DenseNet-169). The reason ResNet-50 model showed better 
training performance compared to the custom and VGG-16 model, may be because ResNet has more layers (50 layers) 
compared to VGG model. However, ResNet-50 also showed better performance compared to DenseNet-169 which 
has 169 layers. ResNet-50 has been previously shown to have better performance on the ImageNet dataset (Liu et al., 
2021), a large dataset of annotated photographs intended for use in development of visual object recognition software, 
relative to other models. This is probably because ResNet-50 has a skip connection architecture unlike the other two 
models (VGG and DenseNet) which have straight forward architecture (Sun et al., 2014). ResNet-50 did not show any 
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improvement with an increasing number of epochs past 30 suggesting the model saturated.  
Hypothesis was partly correct and SNN was able to get detect PD using smaller MRI datasets with better precision 

compared to other custom and transfer learning CNN models. Additionally, it was predicted that transfer learning 
CNN approach using DenseNet-169 would have better performance compared to VGG-16 and ResNet-50 because of 
its more layers. It is also possible that DenseNet-169 may have too many layers and images may not have enough 
features to extract, leading to overfitting of the dataset. 

To the best of our knowledge, SNN model performance (testing precision = 0.988) is the highest compared to 
other studies using CNN transfer learning (Sabyasachi et al., 2020 & Shah et al., 2018). SNN is a novel artificial neural 
network allowing efficient learning with small amounts of data (Xing et al., 2021 & Figueroa-Mata et al., 2020) and 
doesn’t get affected by the class imbalance (Bedi et al., 2020). SNN is a twin neural network which compares every 
two images and then separates all the images into sub-groups, which then separate into your actual classification 
groups eventually. Because these networks consider the similarity/dissimilarity using both positive and negative 
samples, they form the neighborhood relationship, keeping similar samples closer and the dissimilar ones far apart. 
Because of the same reason, these networks have proven to be vigorous against class imbalance. 

In this study and unlike previously published work, automatic detection was employed and extraction of ROI. 
Deep learning model determined that the ROI was the corpus callosum region brain axial MRI images. Previous 
studies have shown corpus callosum volumes were smaller in the Parkinson’s patient groups with PD (Goldman et al., 
2017). Corpus callosum abnormalities may contribute to PD cognitive impairment by disrupting information transfer 
across interhemispheric and callosal–cortical projections (Bledsoe et al., 2018 & Gu et al., 2022). 
 
5. Conclusion 
 

In summary different models were compared and found out that ResNet-50 performed better compared to all 
other CNN models including the custom model. SNN model showed outstanding accuracy and precision for detecting 
PD using MRI images better than the ResNet-50 model. This study also identified the ROI, which identifies the 
location of the region which could be the root cause of the disease and hence provides good understanding of the 
disease as well as increases the performance of the models. Additionally, the issue with the class imbalance and fewer 
amount of labelled data was overcome using a novel SNN model.  
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