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 Abstract 

 Dry  conditions  in  the  Western  United  States  have  increased  the  frequency  and  severity  of  forest  fires  in  the  Sierra 
 Nevada  Mountain  Range.  Organizations  and  cities  are  actively  working  towards  developing  a  better  understanding 
 of  forest  structure  and  dynamics.  While  tree  species  classification  models  in  the  past  have  dealt  with  smaller  regions 
 and  fewer  trees,  we  hypothesized  that  it  is  possible  to  scale  the  area  and  number  of  trees  analyzed  by  our  model 
 without  sacrificing  model  accuracy  by  adding  additional  variables  to  satellite  imagery,  such  as  Normalized 
 Difference  Vegetation  Index  (NDVI),  Normalized  Difference  Moisture  Index  (NDMI),  Soil-Adjusted  Vegetation 
 Index  (SAVI),  crown  ratio,  tree  height,  and  tree  diameter.  We  compared  the  results  of  applying  the  Random  Forest 
 (RF)  Machine  Learning  (ML)  algorithm  to  a  dataset  containing  satellite  imagery  alone  and  with  a  dataset  containing 
 satellite  imagery  augmented  with  object-specific  attributes  (OSA)  such  as  crown  shape,  tree  height,  and  tree 
 diameter.  We  then  trained  and  tested  the  algorithm  across  two  large  and  different  regions  with  similar  tree  species 
 prevalence.  After  the  addition  of  OSA  to  training  data,  the  results  from  the  experiment  demonstrated  a  mean 
 classification accuracy increase from 66.4% to 90.2%, thus allowing the ML model to scale over larger regions. 
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 1.  Introduction 

 With  the  recent  increase  in  frequency,  intensity, 
 and  duration  of  forest  fire  events  in  the  Western 
 United  States,  cities  and  researchers  are  looking  to 
 better  understand  forest  structures  to  prevent  and 
 mitigate  large  fire  events.  Classifying  and  mapping 
 tree  species  provides  an  efficient  and  effective  way  to 
 manage  forest  inventories  and  protect  forest 
 resources.  Accurate  maps  are  also  necessary  for 
 effectively  monitoring  drought  and  fire  conditions, 
 which  could  severely  threaten  a  forest  ecosystem 
 (Talukdar,  et  al.,  2020;  Ballanti,  et  al.,  2016).  These 
 maps  could  help  firefighters  better  understand  a 
 forest’s  vegetation  and  characteristics,  which  are 

 essential  variables  to  consider  when  attempting  to 
 predict and assess the behavior of an active fire. 

 Remote  sensing  is  a  perfect  technique  for  such 
 tasks,  providing  synoptic  views  and  information  over 
 large  areas  at  very  high  resolutions.  Specifically  for 
 tree  species  classification,  remote  sensing  through 
 high  spectral  bands  of  imagery  provides  the  highest 
 resolution  and  detail  for  tree  species  classification.  As 
 a  result,  airborne  hyperspectral  light  detection  and 
 ranging  (LiDAR)  imagery  satisfies  the  optimal 
 conditions  for  sensors  best  suited  for  tree  species 
 classification  (Immitzer,  et  al.,  2012).  LiDAR  allows 
 for  the  capture  of  spatial  patterns  of  on-the-ground 
 features  through  multiple  spectral  bands,  which 
 makes  it  a  very  useful  tool  in  the  field  of  remote 
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 sensing,  specifically  for  the  classification  of  remotely 
 sensed  objects.  However,  airborne  LiDAR  is  not  a 
 practical  source  of  imagery  due  to  its  high  costs  and 
 limited  availability.  As  a  result,  alternative  sources  of 
 remotely  sensed  imagery  must  be  considered. 
 Multispectral  satellite  imagery  is  a  possible 
 alternative  to  hyperspectral  LiDAR  imagery,  despite 
 its  inability  to  reach  the  detail  and  spectral  band 
 variety  of  hyperspectral  lidar  imagery  (Immitzer,  et 
 al.,  2012;  Wang,  et  al.,  2021).  The  terms 
 hyperspectral  and  multispectral  refer  to  the 
 electromagnetic  spectral  band  variety  of  the  image. 
 Hyperspectral  imagery  encompasses  more  spectral 
 bands,  making  it  more  sophisticated  than 
 multispectral imagery (Wang, et al., 2021). 

 The  application  of  machine  learning  in 
 classification  algorithms  used  in  the  general  field  of 
 remote  sensing  has  been  increasing  in  popularity. 
 These  algorithms  have  become  increasingly 
 important  for  general  object  classification  through 
 hyperspectral  imagery  and  multispectral  satellite 
 imagery.  For  example,  past  research  and  applications 
 have  used  the  RF  machine  learning  algorithm  to 
 classify  land  cover,  map  ecological  zones  and 
 landslides,  create  forest  canopy  fuel  maps  for  fire 
 forecasting,  and  analyze  urban  tree  species 
 inventories  (Ballanti,  et  al.  2016;  Immitzer,  et  al., 
 2012).  In  these  applications,  RF  has  been  used  with 
 both  hyperspectral  data  and  multispectral  satellite 
 imagery  because  of  the  large  number  of  input 
 variables provided for the algorithm. 

 While  RF  has  performed  successfully  with 
 LiDAR  and  spectral  data  in  past  research  (Ballanti,  et 
 al.,  2016;  Ghimire,  2010;  Clark  and  Roberts,  2012), 
 our  experimentation  demonstrates  RF  providing 
 66.4%  mean  classification  accuracy  when  using 
 satellite  imagery  alone.  We  also  trained  and  validated 
 across  different  regions  with  similar  prevalence  of 
 tree  species.  In  this  study,  we  experimented  with 
 including  OSA,  such  as  crown  ratio,  tree  height,  and 
 tree  diameter,  with  satellite  imagery  to  improve  the 
 classification  accuracy  across  larger  and  geologically 
 diverse  regions.  Our  goal  was  to  scale  the  model  by 
 improving  model  performance  over  a  more  extensive 
 area  with  variations  in  topographical  features  and 
 vegetation.  We  hypothesized  that  RF  would 
 demonstrate  higher  classification  accuracy  with  the 

 addition of OSA. 

 2.  Materials and Methods 

 2.1 Study Area and Data 

 Our  region  of  study  was  the  Greater  Lake  Tahoe 
 region/El  Dorado  National  Forest,  California 
 (39°58'N,  -121°24'  W).  Our  satellite  image, 
 downloaded  from  the  United  States  Geological 
 Survey  (USGS)  website,  was  captured  from  the 
 Landsat  8  Operational  Land  Imager  (OLI).  The  area 
 is  a  mix  of  mountainous  terrain  and  dense  temperate 
 forest  with  elevations  ranging  from  0  m  to  1898  m 
 above  sea  level,  which  adds  to  the  significant 
 variance  among  tree  species  in  the  area.  Of  this  larger 
 region,  we  broke  up  the  dataset  into  two  small 
 subregions,  one  in  the  Northern  Greater  Lake  Tahoe 
 Region  (R1)  and  the  other  in  the  El  Dorado  National 
 Forest  (R2),  south  of  the  Greater  Lake  Tahoe  Region. 
 We  optimized  our  data  this  way  because  the  scale  of 
 the  study  site  was  too  large  to  train  and  cross-validate 
 our  machine-learning  models.  The  bounds  of  the  full 
 satellite  image  also  contained  non-forested  land,  such 
 as  shrubland,  agricultural  land,  urban  areas,  etc., 
 which  could  confound  our  models  and  lead  to 
 misclassification.  In  addition,  we  specifically  selected 
 the  two  subregions  in  the  northern  and  southern 
 regions  of  the  Greater  Lake  Tahoe  region  because  it 
 allowed  us  to  see  if  the  models  were  scalable  on  very 
 similar, but not identical, regions. 

 Figure 1. Study site and location of testing regions. 
 The image was acquired from the United States 
 Geological Survey database and captured by the 
 Landsat 8 OLI satellite. 
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 Our  ground  truth  data  came  from  the  US 
 Department  of  Agriculture  (USDA)  Forest  Service 
 TreeMap2016,  a  tree-level  model  of  forests  in  the 
 conterminous  United  States.  Both  regions  have  a 
 similar  distribution  of  tree  species,  with  the  tree 
 species  discussed  in  our  study  being  the  most 
 prevalent  in  the  region.  The  reason  for  the 
 distribution  of  tree  species  not  being  identical  across 
 both  regions  is  that  the  distribution  of  tree  species 
 varies  due  to  environmental  factors  such  as  altitude, 
 mean  temperature,  forest  density,  weather  patterns, 
 etc. 

 Table 1. The distribution of tree species in the regions 
 of study. The table also includes the total number of 
 trees of the selected species in R1 and R2. The data 
 were imputed from the Forest Inventory and Analysis 
 database, which the USDA Forest Service matched 
 onto a raster grid. We processed the raster data of our 
 study regions and computed the distributions for the 
 most prevalent tree species in the regions. 

 Scientific Name  R1 Count  R2 Count 

 (‘000)  %  (‘000)  % 

 Abies concolor (AC)  377.1  24.3  84.1  23.9 

 Arbutus menziesii (AM)  30.5  2.0  17.7  22.7 

 Calocedrus decurrens (CD)  179.3  11.6  148.6  13.6 

 Cornus nuttallii (CN)  68.7  4.4  11.1  13.5 

 Pinus lambertiana (PL)  148.5  9.6  63.3  10.2 

 Pinus ponderosa (PP)  88.5  5.7  24.5  4.4 

 Pseudotsuga menziesii 
 (PM) 

 467.6  30.2  140.9  4.0 

 Quercus chrysolepis (QC)  125.3  8.1  84.7  3.0 

 Quercus douglasii (QD)  25.4  1.6  27.5  2.9 

 Quercus kelloggii (QK)  38.3  2.5  18.7  1.8 

 Total  1,549.4  100.0  621.0  100.0 

 2.2 Pre-processing and Data Formatting 

 The  satellite  imagery  we  used  for  our  analysis 
 were  the  second  band  (blue,  0.450  -  0.51  μm),  third 
 band,  (green,  0.53  -  0.59  μm),  fourth  band  (red,  0.64  - 
 0.67  μm),  fifth  band  (near  infra-red  (NIR),  0.85-0.88 
 μm)  and  sixth  band  (Short-wave  infrared  (SWIR1), 
 1.57-1.65  μm).  NDVI,  NDMI,  and  SAVI  were 
 computed  using  NIR  and  SWIR1.  Crown  Ratio,  Tree 
 Height,  and  Tree  Diameter  were  obtained  using  the 

 USDA TreeMap2016 data set. 
 We  also  re-projected  the  satellite  imagery  on  the 

 WGS84  coordinate  reference  system  (CRS)  to  match 
 the  TreeMap2016  raster  image's  CRS,  NAD83  Conus 
 Albers.  Due  to  the  bounds  of  the  full  satellite  image 
 encompassing  non-forested  land  and  our  system 
 running  into  image  processing  constraints,  we 
 cropped  the  dataset  to  the  two  further  subregions 
 within the larger image. 

 We  balanced  our  datasets  using  random 
 undersampling  to  prevent  data  imbalances  and  an 
 uneven  dataset.  Random  undersampling  balances  an 
 uneven  dataset  by  keeping  all  data  points  in  a 
 minority  class  and  decreasing  the  size  of  the  majority 
 class  to  match  the  size  of  the  minority  class.  The  data 
 points  removed  from  the  majority  classes  are  chosen 
 randomly (Hasanin and Khoshgoftaar, 2018). 

 2.3 Classification 

 For  model  training,  we  used  a  cross-validation 
 approach.  We  trained  our  models  on  Region  1  and 
 validated  on  Region  2  (train-test  pair  of  R1,  R2),  and 
 trained  on  Region  2  and  validated  on  Region  1.  We 
 performed  this  experiment  using  satellite  imagery 
 alone  as  well  as  satellite  imagery  with  OSA  data.  The 
 inputs  for  our  models  were  NDMI,  NDVI,  SAVI,  the 
 strength  values  of  the  red,  green,  and  blue  bands  of 
 satellite  imagery  represented  as  a  16-bit  digital 
 notation,  as  well  as  OSA  data  using  the  USGS 
 TreeMap2016 dataset. 

 For  our  classification,  we  applied  the  RF  machine 
 learning  algorithm.  RF  is  a  non-parametric  ensemble 
 learning  algorithm  consisting  of  a  large  number  of 
 decision  trees,  which  enhances  traditional  decision 
 trees.  An  individual  bootstrapping  sample  (sampling 
 with  replacement)  is  utilized  to  construct  each 
 decision  tree.  At  each  node  of  the  tree,  the  split 
 determination  is  based  on  the  Gini  criterion.  With 
 standard  decision  trees,  nodes  are  split  by  the  variable 
 that  provides  the  best  split  or  the  highest  decrease  in 
 Gini.  However,  RF  randomly  selects  a  subset  of 
 variables  at  each  node  and  chooses  the  best  splitting 
 variable.  New  data  are  classified  from  a  majority  vote 
 among  the  classification  outcomes  of  all  constructed 
 decision  trees.  For  determining  a  rough  estimate  of 
 the  classification  error,  the  out-of-bag  data  (OOB), 
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 the  samples  not  in  the  bootstrapping  sample,  are 
 used.  Each  decision  tree  is  used  to  classify  the 
 samples  with  the  OOB  dataset.  Finally,  for  each 
 sample  in  the  original  data  set,  the  majority  vote  of 
 the  corresponding  decision  trees  is  compared  with  the 
 truth  labels,  resulting  in  an  estimate  of  the 
 misclassification  rate  (Immitzer,  et  al.,  2012; 
 Breiman,  2001).  For  our  model,  we  set  our 
 parameters  such  that  warm_start=False, 
 n_estimators=100,  and  max_depth=100.  These 
 parameters  ensure  the  algorithm  uses  adequate 
 decision  trees  with  significant  depth  to  increase  the 
 robustness  of  the  model  and  improve  model 
 performance. 

 3.  Results 

 For  each  train-test  pair  for  both  satellite  imagery 
 and  satellite  imagery  +  OSA,  we  calculated  the 
 classification  accuracy,  precision,  recall,  F1-score, 
 and  Cohen’s  Kappa  coefficient.  We  then  constructed 
 a  confusion  matrix  for  each  train-test  pair  for  satellite 
 imagery  +  OSA  to  determine  the  tree  species  with  the 
 highest  mean  classification  accuracies  among  all 
 algorithms.  Model  precision  indicates  the  accuracy  of 
 the  model  in  terms  of  how  many  instances  that  the 
 model  classified  as  a  certain  label  were  actually 
 correct.  Model  recall  indicates  the  accuracy  of  the 
 model  in  terms  of  how  many  instances  were  correctly 
 classified  over  the  total  number  of  instances  for  that 
 specific  label.  The  F1-score  is  the  harmonic  mean  of 
 precision  and  recall.  Kappa  reflects  the  model’s  true 
 accuracy  without  the  addition  of  correct 
 classifications  due  to  random  chance  (Yacouby  and 
 Axman, 2020). 

 For  training  and  validation  on  satellite  imagery  + 
 OSA,  our  model  exhibited  a  mean  classification 
 accuracy  of  90.20%,  mean  precision  of  90.90%, 
 mean  recall  of  90.14%,  mean  F1-Score  of  90.14% 
 and mean Kappa of 89.07%. 

 Table 2. Percentage Accuracy Metrics Table, Satellite 
 Imagery + OSA 
 Train-Test  Accuracy  Precision  Recall  F1-Score  Kappa 
 (R1, R2)  95.17  95.75  95.07  95.09  94.53 
 (R2, R1)  85.23  86.04  85.2  85.18  83.6 

 For training and validation on satellite imagery 
 alone, our model exhibited a mean classification 
 accuracy of 66.40%, mean precision of 69.04%, 
 mean recall of 66.25%, mean F1-Score of 65.72% 
 and mean Kappa of 62.50%. 

 Table 3 (all figures in %): Accuracy Metrics Table, 
 Satellite Imagery Only 
 Train-Test  Accuracy  Precision  Recall  F1-Score  Kappa 
 (R1, R2)  73.52  75.5  72.46  71.72  69.38 
 (R2, R1)  59.28  62.58  60.04  59.72  55.61 

 Figure 2. Confusion Matrix: Classification using 
 satellite imagery + OSA. Training-Testing R1/R2 

 Figure 3. Confusion Matrix: Classification using 
 satellite imagery + OSA. Training-Testing R2/R1 
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 Figure 4. Confusion Matrix: Classification using 
 satellite imagery only. Training-Testing R1/R2 

 Figure 5. Confusion Matrix: Classification using 
 satellite imagery only. Training-Testing R2/R1 

 Figure 6. Spider chart comparison of satellite imagery 
 + OSA tree species-specific classification accuracy 
 for both Train-Test Pairs. The spider chart compares 
 RF’s overall performance for each Train-Test pair. 
 The distance of an algorithm’s polygon’s edge to the 
 end of the spoke reflects the accuracy the algorithm 
 demonstrated for that specific Train-Test pair. 

 Figure 7. Spider chart comparison of satellite imagery 
 only tree species-specific classification accuracy for 
 both Train-Test Pairs. 

 4.  Discussion 

 The  addition  of  object-specific  attributes  to 
 satellite  imagery  significantly  improved  classification 
 accuracy  across  regions.  Tables  2  &  3  show  a 
 summary  of  the  performance  metrics  of  the  RF 
 classification  for  cross-region  Training  and  Testing 
 split  (Train-R1:Test-R2,  Train-R2:Test-R1),  under 
 both  scenarios,  using  satellite  imagery  alone  and 
 satellite  imagery  augmented  with  OSA.  When  adding 
 OSA,  the  average  classification  accuracy  increased 
 from  66.4%  to  90.2%.  In  addition,  the  Kappa  values 
 went  from  indicating  moderate  to  strong  agreement 
 between  the  classification  results  and  reference  data 
 by  increasing  from  62.50%  to  89.07%.  When 
 comparing  the  confusion  matrices  in  Figures  2  &  3  to 
 the  confusion  matrices  in  Figures  4  &  5,  the 
 percentage  of  correct  classifications  in  Figures  2  &  3 
 is  higher  across  all  tree  species  than  those  in  Figures 
 4  &  5.  The  comparison  between  Figures  6  &  7 
 reflects  the  same  observation,  as  the  distance 
 between  the  labels  and  edges  of  the  R1,  R2  &  R2,  R1 
 polygons  in  Figure  6’s  spider  chart  is  significantly 
 less  than  that  of  Figures  7’s  spider  chart,  indicating 
 higher  tree  species-specific  classification  accuracy 
 for  satellite  imagery  +  OSA.  Overall,  introducing 
 OSA  in  our  models  improved  scalability  by 
 increasing  model  accuracy  when  training  and 
 validating  on  separate  regions.  The  difference  in 
 accuracy  metrics  between  train-test  pairs  is  possibly 
 due  to  variations  in  the  geographical  features  or 
 environmental  dynamics  between  regions.  In 
 addition,  the  disparity  in  total  instances,  displayed  in 
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 Table  1,  could  potentially  explain  the  difference  in 
 accuracy  metrics,  as  Region  1  having  more  instances 
 than  Region  2  allows  the  model  to  possess  more 
 knowledge  when  training  on  Region  1  and  validating 
 on  Region  2  than  it  does  when  training  on  Region  2 
 and  validating  on  Region  1,  thus  yielding  a  higher 
 classification accuracy for the R1, R2 train-test pair. 

 There  could  be  many  underlying  reasons  for 
 reduced  classification  accuracy  when  using  satellite 
 imagery  values  only.  This  includes  a  minimal 
 distinction  between  RGB  strength  values  pixels 
 between  different  tree  species,  a  complex  forest 
 structure  of  the  study  region,  and  a  top-viewed 
 pixel-based  classification  approach  for  tree  species 
 based  on  a  large  plot  of  land.  However,  adding  OSA 
 provides  better  distinction  for  RF  algorithms  to 
 iterate, resulting in better classification accuracy. 

 When  processing  the  data  for  analysis,  we  ran 
 into  numerous  memory  issues  because  of  the  size  and 
 scale  of  our  datasets.  We  initially  tried  to  encompass 
 a  significantly  larger  cutout  of  the  Greater  Lake 
 Tahoe/El  Dorado  National  Forest  region  to  ensure 
 ample  geographic  diversity  but  continuously  ran  into 
 errors  because  of  our  system’s  limitations  on 
 memory.  To  bypass  this  issue,  we  experimented  with 
 incremental  learning  and  k-fold  cross-validation  as 
 possible  solutions,  but  our  system  continued  to  run 
 into  memory  issues.  Especially  for  studies 
 concerning  large  datasets,  incremental  learning 
 allows  the  model  to  be  trained  from  a  series  of 
 batches,  compared  to  the  entire  dataset  at  once, 
 which  could  pose  issues  depending  on  the  strength  of 
 the  system  used  for  data  analysis  and  processing. 
 Specifically,  incremental  learning  is  learning  through 
 streaming  data,  which  arrives  over  time  without 
 sacrificing  the  model’s  accuracy.  As  a  result,  the 
 models’  overall  accuracy  when  training  and 
 validating  different  general  regions  could  potentially 
 have  improved  with  a  stronger  system  designed  for 
 handling  larger  datasets  and  a  successful 
 implementation  of  incremental  learning.  A  stronger 
 system  could  potentially  process  a  larger  study  area 
 with  higher  OSA  specificity,  allowing  models  to 
 encompass  larger  regions  with  more  geographical 
 diversity  without  sacrificing  performance.  Further 
 research  that  implements  incremental  learning,  k-fold 
 cross-validations,  and  a  stronger  processing  system 

 could  potentially  help  construct  more  sophisticated 
 models  that  are  more  accurate  and  encompass  larger 
 regions. 

 5.  Conclusion 

 Mapping  tree  species  provide  an  effective  way  to 
 manage  forest  inventories  and  resources.  While  high 
 classification  accuracy  for  tree  species  is  possible  for 
 small  regions  using  satellite  imagery,  this  research 
 concludes  that  scaling  of  RF  ML  algorithm  across  a 
 wider  region  is  possible  with  high  classification 
 accuracy  by  including  OSA  such  as  crown  shape,  tree 
 diameter,  and  tree  height  to  satellite  imagery.  Since 
 this  research  focused  on  the  Greater  Lake  Tahoe 
 region,  additional  investigations  should  explore  the 
 applicability  of  these  findings  in  other  regions  and 
 introduce  incremental  or  k-fold  cross-validation 
 approaches  to  further  improve  model  performance 
 and scalability. 

 Acknowledgments 

 I  would  like  to  thank  my  mentor,  Mr.  Jeff  Wen 
 (Stanford  School  of  Earth,  Energy  &  Environmental 
 Sciences),  for  his  guidance  throughout  this  project.  I 
 would  also  like  to  thank  Dr.  Jeff  Liu  (MIT  Lincoln 
 Laboratory)  for  helping  me  build  foundational 
 knowledge  for  this  research  and  Mr.  Ryan  Malhoski 
 (GIS  Manager,  City  of  South  Lake  Tahoe)  for  helping 
 identify potential datasets. 

 References 

 Ballanti, L., et al. (2016). Tree Species Classification 
 Using Hyperspectral Imagery: A Comparison of Two 
 Classifiers.  Remote Sensing  8(6) 445 
 https://doi.org/10.3390/rs8060445 

 Breiman, L. (2001).  Machine Learning  45(1), 5–32. 
 https://doi.org/10.1023/a:1010933404324 

 Clark, M. L., & Roberts, D. A. (2012). Species-Level 
 Differences in Hyperspectral Metrics among Tropical 
 Rainforest Trees as Determined by a Tree-Based 
 Classifier.  Remote Sensing  4(6), 1820–1855. 
 https://doi.org/10.3390/rs4061820 

 Ghimire, B., Rogan, J., & Miller, J. (2010). 
 Contextual land-cover classification: incorporating 

 233 



 J. Res. HS  Vol. 2023 (1) 228 - 234 

 spatial dependence in land-cover classification 
 models using random forests and the Getis statistic. 
 Remote Sensing Letters  1(1), 45–54. 
 https://doi.org/10.1080/01431160903252327 

 Hasanin, T., & Khoshgoftaar, T. (2018). The Effects 
 of Random Undersampling with Simulated Class 
 Imbalance for Big Data.  IEEE International 
 Conference on Information Reuse and Integration 
 (IRI).  https://doi.org/10.1109/iri.2018.00018 

 Immitzer, M., Atzberger, C., & Koukal, T. (2012). 
 Tree Species Classification with Random Forest 
 Using Very High Spatial Resolution 8-Band 
 WorldView-2 Satellite Data.  Remote Sensing  4(9), 
 2661–2693. https://doi.org/10.3390/rs4092661 
 Talukdar, S., et al. (2020). Land-Use Land-Cover 

 Classification by Machine Learning Classifiers for 
 Satellite Observations—A Review.  Remote Sensing  , 
 12(7), 1135. https://doi.org/10.3390/rs12071135 

 Wang, Y., et al. (2021). Classification of Street Tree 
 Species Using UAV Tilt Photogrammetry.  Remote 
 Sensing  13(2), 216. 
 https://doi.org/10.3390/rs13020216 

 Yacouby, R., & Axman, D. (2020). Probabilistic 
 Extension of Precision, Recall, and F1 Score for 
 More Thorough Evaluation of Classification Models. 
 Proceedings of the First Workshop on Evaluation and 
 Comparison of NLP Systems, Association for 
 Computational Linguistics  , 79-91 
 doi:10.18653/v1/2020.eval4nlp-1. 

 234 


