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Abstract

Human Pose Estimation (HPE) is the process of identifying keypoints in the human body image to infer human posture
and movement. HPE can transform health care by enabling personalized, data-driven rehabilitation through detailed
motion analysis, allowing therapists to tailor programs to individual needs. HPE models face challenges with
generalization capabilities when applied to unseen data domains, hindering their practical application in real-world
scenarios. This research project focused on enhancing the reliability and robustness of the ResNet machine learning
model for 2D human pose estimation across different data domains. The model used in this study is based on the
ResNet architecture due to its simplicity and effectiveness. Experiments were conducted to analyze how different
factors influence the reliability and robustness of the Machine Learning (ML) model. Training for the model was
conducted using the Max-Planck Institute for Informatics (MPII) dataset, while the Leed Sports Pose (LSP) dataset
was used to evaluate performance. The results of this research indicate that the ResNet-50 model showed
improvements in generalization capability by using data augmentation, minimizing data bias, and transfer learning
using the optimal learning rate. The final model achieved a Percentage of Correct Keypoints accuracy score of 88.91%,
an increase of 5% from the baseline. These findings contribute to technical advancements in HPE, ultimately
advancing the practical use of HPE in applications like healthcare and rehabilitation.
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1. Introduction

Human pose estimation (HPE) is identifying significant keypoints in the human body image, to infer the human
pose. 2D HPE is a computer vision task that involves identifying human joints or keypoints such as the wrists, elbows,
shoulders, etc. (Munea et al., 2020). HPE has diverse applications, including health care and rehabilitation, by enabling
personalized and data-driven medical treatment. Through detailed motion analysis, therapists can customize
rehabilitation programs to each patient’s unique needs, providing near real-time feedback to assist with recovery. HPE
also supports remote monitoring, virtual physical therapy which improves accessibility especially for those in remote
or underserved areas. Consequently, HPE applications could lead to better health outcomes and quality of life
(Badiola-Bengoa and Mendez-Zorrilla, 2021).

Deep learning approaches are the state-of-the-art methods for HPE which involve using neural networks to
identify human body keypoints (Lan et al., 2022). Convolutional Neural Network (CNN) is a type of deep learning
model which is commonly applied for computer vision tasks.

CNNs are well suited for HPE due to the following capabilities:

e Feature Extraction: This is the process of extracting components of an image such as the lines, edges,
and patterns (Jogin et al., 2018).
e Heatmaps: The ML model outputs a heatmap or confidence map which shows how likely a joint is
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positioned at a specific pixel (Munea et al., 2020).

e Context Management: A CNN can process the contextual information by taking advantage of
preliminary filters. This can be useful because visible limbs often provide information about joints that
are occluded (He et al., 2016).

e  Spatial Positioning: CNNs can handle variations in position, location, and angle by taking advantage of
the convolutional layer filters. This is useful because the subject could be anywhere in the image (Cao
etal., 2017).

Human Pose Estimation (HPE) is a challenging task in computer vision and machine learning due to factors like
variability in human poses, background clutter, overlapping limbs, and clothing, which complicate the identification
of occluded joints. To ensure fairness and prevent inaccurate predictions for diverse populations, addressing
algorithmic bias requires diverse training data and thorough testing. HPE models also often face issues with
performance consistency across different datasets, further highlighting the complexity of developing robust solutions
(Andriluka et al., 2014).

This research aimed to enhance the reliability and robustness of a ResNet-based HPE model by evaluating its
cross-dataset generalization—specifically, training on the MPII Human Pose dataset and testing on the Leeds Sports
Pose (LSP) dataset. Both MPII and LSP offer high-quality annotations and portray humans in natural outdoor settings,
making them suitable for evaluating generalization across similar, yet non-identical, pose distributions. By
implementing techniques such as data augmentation and transfer learning, the project seeks to improve model
adaptability and accuracy in diverse, real-world environments, ultimately advancing the practical use of HPE in
applications like healthcare and rehabilitation.

The use of Human Pose Estimation (HPE) offers significant benefits but also raises serious ethical and legal
concerns, particularly regarding privacy. HPE captures sensitive movement data that can reveal medical conditions
and potentially identify individuals. Therefore, ensuring compliance with privacy laws like HIPAA and GDPR
requires secure data handling, anonymization, and protection against cyber threats. As HPE continues to evolve,
collaborative efforts between healthcare providers, technology developers, and policymakers is essential to ensure its
ethical implementation (Bajpai and Aravamuthan, 2024).

2. Materials and Methods

2.1 Dataset

The dataset used in this research project is the MPII (Max-Planck Institute for Informatics) dataset. This is a 2D
human pose dataset which contains over 25,000 images and 16 key point annotations per person (Samkari et al., 2023).
The project then used a second dataset, Leeds Sports Pose (LSP), to evaluate the reliability of the model that was
earlier trained exclusively on the MPII dataset. The LSP dataset is also a 2D human pose dataset which comprises
2000 images with 14 keypoints on each image. Each person in this dataset is in a sports-related pose. These two
datasets were chosen for their high image count and quality annotations. The poses are more abstract and complicated
which makes the LSP dataset a good measure of how well a model understands the human pose in diverse real-world
scenarios (Samkari et al., 2023). This approach enabled
the development of more robust and accurate ML
models for analyzing dynamic human movements in
practical deployments.

Kinematic skeleton is a 2D HPE technique that
identifies the location of human joints in the images.
Through post-processing, these joint locations can be
connected to form the skeleton (Zheng et al., 2023). As

Input Image

Detected Keypoints Output Image: Human Pose

Figure 1. Human pose estimation using a ResNet-based

shown in Figure 1, the ML Model can draw the
kinematic skeleton when these keypoints are accurately
predicted.

machine learning model. The input frame (left) is processed
to predict human body keypoints (center, green), which are
subsequently structured into a kinematic skeleton (right,
blue), effectively visualizing the estimated human pose.
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2.2 Model Selection and Architecture

Model selection for HPE involved choosing the right neural network based on the research project requirements
(dataset availability and accuracy) and compute constraints (GPU and processing power). DeepPose is a classic neural
network for HPE that follows the cascade regression approach for producing accurate keypoints. This top-down
approach iteratively refines initial coarse joint predictions from the full image, marking a significant transition and
establishing the groundwork for future deep learning methods in HPE (Toshev and Szegedy, 2014).

Stacked hourglass for HPE makes use of several hourglass modules that predict joint locations in stages. The
model architecture utilizes convolutional and max pooling layers to process data down to low resolution. After this
process, the model then does up-sampling and combines features across different scales. This process is repeated to
fine tune the results (Newell et al., 2016). The Stacked Hourglass network was eliminated because it is computationally
expensive.

ResNet is a Convolutional Neural Network (CNN) that has residual connections between layers. These residual
connections are also called skip connections because they move information by skipping the previous layer (Xiao and
Wanggen, 2017). The model does not use fully connected layers. The lack of these layers allows for the model to
output the confidence maps that predict the key point location.

DeepPose and Stacked Hourglass models primarily focus on achieving high keypoint localization accuracy within
single-domain benchmarks. In contrast, this study emphasizes cross-domain generalization, utilizing data
augmentation, transfer learning, and bias mitigation to improve model robustness.

This research project is based on a modified ResNet-50 architecture proposed in "Simple Baselines for Human
Pose Estimation" (Xiao et al., 2018). The ResNet architecture uses the residual connection between blocks to preserve
gradients and data. Each ResNet block is composed of different convolutional layers and filters. As shown in figure 2
below, at the end of the model, a few deconvolutional layers upscale the output to produce the feature maps needed to
predict the keypoints. The input image size is 256x256 with rectified linear unit (ReLu) activation. Each layer has 256
filters and a 4x4 kernel. The model predicts 16 heat maps using a 1x1 final convolution stage, one for each joint (Xiao
et al., 2018).

ResNet was selected due to its balance of

— accuracy, simplicity, and efficiency. Its residual

@ — learning structure enables deeper and more stable

@ —J m L networks, improving feature extraction when

- generating high-resolution heat maps for keypoint

detection. Compared to older models like

DeepPose and computationally intensive models

like Stacked Hourglass, the ResNet model

generalizes effectively across different domains,
making it particularly useful for practical applications where data variability is high.

Mean Squared Error (MSE) Loss is a common metric used to train HPE models by quantifying the error between
predicted and ground truth joint locations.

]

/
LY

Figure 2. Visualization of ResNet Model Architecture showing
different convolutional layers (Xiao et al., 2018)

1% .
MSE = NZ =9
i=
N, y, and ¥ indicate the quantity of samples, the ground truth value, and the predicted value, respectively.

The MSE Loss function aggregates the difference of each joint's heatmap and finds the loss. The ground truth
heatmaps were calculated from pre-annotated keypoints. Each joint was given a feature map and a Gaussian
distribution with a sigma of 2 was used to generate the points. Because this function squares the error, any large errors
get magnified and get more weight (Samkari et al., 2023). This will force the model to focus on these large errors and
correct itself.

The Percentage of Correct Keypoints (PCK) is a common metric for HPE which looks at how close each predicted
joint is to the ground truth. This method uses a set threshold value to judge how close each predicted joint needs to be
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to the ground truth joint. A more commonly used metric is the PCKh@0.5 metric to evaluate the model performance.
This metric uses 50% of the head segment length as the threshold which allows each image to have a unique threshold
that is scaled to the subject of the image (Mykhaylo et al., 2014). A higher PCKh score indicates better performance.

2.3 Data Preprocessing and Augmentation

Many transformations were applied to the data during preprocessing the data. Each image in the MPII dataset has
details about the person's center and the scale of each image. To increase accuracy, the program resized and cropped
images to ensure that the human is the main focus for each image. The image gets resized to 256 x 256 This allows
for better training accuracy because each person is about the same size.

This ML model uses 3 types of data augmentations to vary the data during training. The program applies scale,
rotation, and horizontal flip. The rotation and scale are done randomly, while the flip has a 50% chance of being
applied to the image. This allows for varied data when training the ML model. By default, an image can be rotated by
+30 degrees while an image can be scaled by +25%.

2.4 Model Training Process

Several hyperparameters were used during the training of this model. The ML model was trained on 140 epochs
at a learning rate of 0.0001. To improve efficiency, the learning rate is designed to change as the model progresses
through training. At the 90 and 120 epoch marks, the learning rate is multiplied by a factor of 0.1. This is shown in
the above graph because the PCKh stabilizes past epoch 90. This model also used a batch size of 32.

As shown in figure 3, the graph shows how each
joint's accuracy increases over time. The graph
highlights how the head joint increases much faster
than the ankle joint. This is due to how each joint is
represented in the training dataset. Many lower body
joints are frequently missing in images. This leads to

100 == Head

== Shoulder
Elbow

== Wrist

== Hip

{ Knee
/

50

Ankle

Mean

fewer images that the model can use to learn these |
25

|

features. Thus, the model takes longer to increase the |

accuracy of these specific joints.
This ML model was trained on a single NVIDIA 0 3 70 105 140

T4 Tensor GPU using Google Colab and took about Epoch

16 hours of training time on 50% of the data. Due to  Figure 3. Graph shows the PCK@0.5 (prediction score) over 140

Google Colab restrictions, reducing the data size training epochs for each joint.

from 24k to 12k images was needed to lower training

times. The project is based on the ML model using the Pytorch library with a ResNet backbone. Training time was

limited to 16 hours per experiment when training using Google Colab. The second limitation is computational power.

When using Google Colab, the experiments were restricted to using one T4 GPU for training and testing.
3. Results
3.1 Data Augmentation (Rotation and Scale)

The experiment tested the impact of data augmentation (rotation and scale) on PCkh@0.5 during training. To
effectively test the impact of data augmentation, 3 different models were trained with different magnitudes of
augmentation. The rotation factor rotated the images at a random percentage within a specific range. For example, the

strong augmentation chose a rotation between -15 and 15. Taple 1. Characteristics of different levels of augmentation

The scale factor also scaled the image within the specified Augmentation Type | Normal | Weak Strong

threshold. Rotation Factor 0° 5° 15°
Scale Factor 1% 6% 12%

Each version was trained on the MPII training data
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and tested on the MPII and LSP

Augmentation Level MPII LSP Average testing data to observe how well
PCKh@0.5 PCKh@0.5 PCKh@0.5 the model performs against new,
Normal 85.60% 86.53% 86.07% unseen data.
Weak 86.22% 89.19% 87.71% . .
Strong 86.57% 91.25% 88.91% As shown in Figure 4, the

LSP dataset exhibits a tight

clustering of joints, with most points concentrated near the center of the frame. In contrast, the MPII dataset displays
a much wider spread of joint positions across the image space. This highlights that strong data augmentation helped

the model encounter a broader range of
scenarios, making it more robust to the
variety of poses present, particularly in
the LSP dataset.

3.2 Minimizing Data Bias

In this experiment, a new
"diversified" training dataset was created
to minimize bias in the trained model. The
new training set is composed of
previously used 12k MPII training data
but was supplemented with 700 images of

MPII Distribution LSP Distribution

-1000 -750 -500 -250 0O 250 500 750 1000 -75 =50 =25 0 25 50 75

Figure 4. Visualization of keypoint distributions in the MPII and LSP
datasets. Each dot represents the location of a specific body joint across all
samples, with different colors indicating different keypoints.

LSP training data. The goal was to expose the ResNet50 ML model to a variety of data sources to ensure diversity
during training which would allow the ML model to better generalize to a different domain. This diversity helped the

model learn robust representations.

Table 3. Score of each ML model trained with its respective training

The observation during the experiment

dataset. found that each dataset might be skewed
Dataset MPII LSP Average slightly towards a location or joint visibility.
PCKh@0.5 PCKh@0.5 PCKh@0.5 The experiment indicates some missing key
MO 86.38% 79.90% 83.14% points in the datasets.
Mixed (MPII + LSP) 85.68% 83.04% 84.36%

Based on the percentage of missing

joints depicted in Figure 5, the MPII dataset featured a greater number of upper-body annotations compared to the

LSP dataset, which showed a higher prevalence of lower-body annotations. By merging the two datasets, these skews
were corrected, which helped to minimize the risk of overfitting and improved the performance of the HPE model.

3.3 Transfer Learning

Transfer learning is a ML technique in which
knowledge learned from a task is harnessed to improve
the performance on a related task. Transfer learning is
particularly effective when fine-tuning because the
process takes advantage of previously learned features Hip
such as edges and patterns that are useful for human

Distribution of Joints

Ankle

Knee

pose estimation. The goal is to utilize transfer learning "
to allow the ResNet50 ML model to better generalize Elbow
across datasets. Shoulder
The process for this experiment was to first train ——
the ML model on the MPII dataset as the source. Head, ‘ , _ =
0.00 0.05 0.10 0.15 0.20

Consequently, transfer learning was then used to train

the ML model on the LSP dataset.

Percentage of Missing Joints

Figure 5. Visualization of missing body joints in the MPII and
LSP datasets.
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In the table above, it is
apparent that the transfer learning

Training T MPII LSP Average
raining T'ype PCKh@0.5 PCKh@0.5 PCKh@0.5 without changing the learning
Without Transfer learning 86.38% 79.90% 83.14% rate caused an overall loss in
performance. While the
Transfer Learning without 81.17% 81.01% 81.09% PCkh@0.5 score increased by
changing learning rate

1% for the LSP dataset, the
PCKh@0.5 score decreased by 5% for the MPII dataset. This led to a 2% reduction in the overall score. It is evident
that the model forgets features of MPII data when training on a low amount of LSP data. When a neural network starts
forgetting features of the previous dataset during transfer learning, it is called catastrophic forgetting.

To prevent this catastrophic forgetting, the experiments were rerun with a smaller learning rate which would
prevent the model from

Table 5. Score of each model with Transfer Learning and its respective Learning Rate overriding the weights created

. MPII LSP Average . . ..
Learning Rate PCKh@0.5 | PCKh@0.5 PCKh@0.5 during the initial training.
: The learning rate is a critical
Normal MPII without Transfer 8

learning 86.38% 79.90% 83.14% hyperparameter that controls how
Learning rate @ 0.0001 84.79% 79.62% 82.21% the ML model adapts to the
problem. Increasing this
Learning rate @ 0.00005 85.27% 81.13% 83.20% parameter results in faster
- : ; training time and a smaller

Transfer Learning with optimal . .
learning rate @ 0.00001 86.46% 82.09% 84.28% learning rate results in a more

gradual training process.
4. Discussion

The graph below depicts the results of the ML model performance for the experiments. As shown in figure 6, the
bar chart
prediction accuracy for MPII, LSP,
and the average of both. The first
experiment with strong augmentation
that is based on rotation factor (15°)
and scale factor (12%) achieved a
final average PCKh@0.5 score of
88.91% from the earlier average of
83.14%. This strong augmentation
increased the wvariability in the
training data by exposing the model

illustrates the final
PCK scores for MPII, LSP and Average
= MPIl = LSP = Average

100.00%

86.38% YT oo 57 A 65.68% PRy E2Y B o) 005, 8428%
75.00% 79.90% i )
50.00%
25.00%
0.00%

Experiment 1 Experiment 2 Experiment 3
Data Augmentation Minimize Data Bias Transfer Leaming

PCKh@0.5 Score

Normal
Figure 6: Final PCKH@0.5 Score for Experiments

Figure 6. Comparison of PCKh@0.5 (prediction scores) across different

to different Orlentatlons Of the same experimental Setups and datasets.

images. This resulted in a more robust
model.

In the second experiment, data bias was minimized by diversifying the dataset. This has achieved a final
PCKh@0.5 average score of 84.36% from the earlier average of 83.14%. The results of this experiment show a
minimal decline in the PCkh@0.5 score for the source MPII dataset, while an approximate 4% increase can be seen
for the target LSP dataset and a 1% increase in the average score. The model performance improved as a result of the
balanced representation during training.

In the third experiment, with transfer learning, the ResNet-50 model achieved a final PCKh@0.5 average score
of 84.28% from the earlier average of 83.14%. This is an overall increase of 1% in the average PCKh score using the
optimal learning rate of 0.0001.

The final model improved PCKh@0.5 metric by 5.30% on average from a baseline of 83.14%, with a 95%
confidence interval of [4.87%, 5.70%], and a p-value < le-7. This indicated a substantial and statistically reliable
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enhancement in pose estimation accuracy. These strategies enabled the ResNet-50 model to improve its performance
in accurately predicting keypoints leading to a more robust and generalizable model for HPE.

For future scope, this research could be extended to multi-person HPE using CrowdPose as a dataset. This research
could also be extended to include 3D Human Pose estimation.

5. Conclusion

This research project has demonstrated various methods to improve the reliability and robustness of the ResNet-
50 ML model for 2D human pose estimation (HPE) across different data domains. PCKh@J0.5 score is a widely used
metric to measure the accuracy of keypoint predictions for HPE. Based on the 3 experiments, the model with strong
data augmentation (rotation and scale) increased the PCKh@0.5 score by more than 5%. This indicates that strong
data augmentation was highly effective in enabling the ResNet-50 ML models to generalize across MPII and Leed
Sports Pose (LSP) datasets.

By enhancing cross-dataset generalization using techniques like data augmentation and transfer learning, the
ResNet-based HPE model became more adaptable to challenges commonly encountered in practical deployments.
These findings contribute to technical advancements in HPE as well as highlight its broader significance in creating
robust and accurate machine learning models for analyzing dynamic human movements in real-world scenarios.
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