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Abstract 

Human Pose Estimation (HPE) is the process of identifying keypoints in the human body image to infer human posture 
and movement. HPE can transform health care by enabling personalized, data-driven rehabilitation through detailed 
motion analysis, allowing therapists to tailor programs to individual needs. HPE models face challenges with 
generalization capabilities when applied to unseen data domains, hindering their practical application in real-world 
scenarios. This research project focused on enhancing the reliability and robustness of the ResNet machine learning 
model for 2D human pose estimation across different data domains. The model used in this study is based on the 
ResNet architecture due to its simplicity and effectiveness. Experiments were conducted to analyze how different 
factors influence the reliability and robustness of the Machine Learning (ML) model. Training for the model was 
conducted using the Max-Planck Institute for Informatics (MPII) dataset, while the Leed Sports Pose (LSP) dataset 
was used to evaluate performance. The results of this research indicate that the ResNet-50 model showed 
improvements in generalization capability by using data augmentation, minimizing data bias, and transfer learning 
using the optimal learning rate. The final model achieved a Percentage of Correct Keypoints accuracy score of 88.91%, 
an increase of 5% from the baseline. These findings contribute to technical advancements in HPE, ultimately 
advancing the practical use of HPE in applications like healthcare and rehabilitation. 
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1. Introduction 
 

Human pose estimation (HPE) is identifying significant keypoints in the human body image, to infer the human 
pose. 2D HPE is a computer vision task that involves identifying human joints or keypoints such as the wrists, elbows, 
shoulders, etc. (Munea et al., 2020). HPE has diverse applications, including health care and rehabilitation, by enabling 
personalized and data-driven medical treatment. Through detailed motion analysis, therapists can customize 
rehabilitation programs to each patient’s unique needs, providing near real-time feedback to assist with recovery. HPE 
also supports remote monitoring, virtual physical therapy which improves accessibility especially for those in remote 
or underserved areas. Consequently, HPE applications could lead to better health outcomes and quality of life 
(Badiola-Bengoa and Mendez-Zorrilla, 2021). 

Deep learning approaches are the state-of-the-art methods for HPE which involve using neural networks to 
identify human body keypoints (Lan et al., 2022). Convolutional Neural Network (CNN) is a type of deep learning 
model which is commonly applied for computer vision tasks.  

CNNs are well suited for HPE due to the following capabilities:  
• Feature Extraction: This is the process of extracting components of an image such as the lines, edges, 

and patterns (Jogin et al., 2018).  
• Heatmaps: The ML model outputs a heatmap or confidence map which shows how likely a joint is 
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positioned at a specific pixel (Munea et al., 2020).  
• Context Management: A CNN can process the contextual information by taking advantage of 

preliminary filters. This can be useful because visible limbs often provide information about joints that 
are occluded (He et al., 2016).  

• Spatial Positioning: CNNs can handle variations in position, location, and angle by taking advantage of 
the convolutional layer filters. This is useful because the subject could be anywhere in the image (Cao 
et al., 2017).  

Human Pose Estimation (HPE) is a challenging task in computer vision and machine learning due to factors like 
variability in human poses, background clutter, overlapping limbs, and clothing, which complicate the identification 
of occluded joints. To ensure fairness and prevent inaccurate predictions for diverse populations, addressing 
algorithmic bias requires diverse training data and thorough testing. HPE models also often face issues with 
performance consistency across different datasets, further highlighting the complexity of developing robust solutions 
(Andriluka et al., 2014). 

This research aimed to enhance the reliability and robustness of a ResNet-based HPE model by evaluating its 
cross-dataset generalization—specifically, training on the MPII Human Pose dataset and testing on the Leeds Sports 
Pose (LSP) dataset. Both MPII and LSP offer high-quality annotations and portray humans in natural outdoor settings, 
making them suitable for evaluating generalization across similar, yet non-identical, pose distributions. By 
implementing techniques such as data augmentation and transfer learning, the project seeks to improve model 
adaptability and accuracy in diverse, real-world environments, ultimately advancing the practical use of HPE in 
applications like healthcare and rehabilitation. 

The use of Human Pose Estimation (HPE) offers significant benefits but also raises serious ethical and legal 
concerns, particularly regarding privacy. HPE captures sensitive movement data that can reveal medical conditions 
and potentially identify individuals. Therefore, ensuring compliance with privacy laws like HIPAA and GDPR 
requires secure data handling, anonymization, and protection against cyber threats. As HPE continues to evolve, 
collaborative efforts between healthcare providers, technology developers, and policymakers is essential to ensure its 
ethical implementation (Bajpai and Aravamuthan, 2024). 
 
2. Materials and Methods  
 
2.1  Dataset 
 

The dataset used in this research project is the MPII (Max-Planck Institute for Informatics) dataset. This is a 2D 
human pose dataset which contains over 25,000 images and 16 key point annotations per person (Samkari et al., 2023).  
The project then used a second dataset, Leeds Sports Pose (LSP), to evaluate the reliability of the model that was 
earlier trained exclusively on the MPII dataset. The LSP dataset is also a 2D human pose dataset which comprises 
2000 images with 14 keypoints on each image. Each person in this dataset is in a sports-related pose. These two 
datasets were chosen for their high image count and quality annotations. The poses are more abstract and complicated 
which makes the LSP dataset a good measure of how well a model understands the human pose in diverse real-world 
scenarios (Samkari et al., 2023). This approach enabled 
the development of more robust and accurate ML 
models for analyzing dynamic human movements in 
practical deployments. 

Kinematic skeleton is a 2D HPE technique that 
identifies the location of human joints in the images. 
Through post-processing, these joint locations can be 
connected to form the skeleton (Zheng et al., 2023).  As 
shown in Figure 1, the ML Model can draw the 
kinematic skeleton when these keypoints are accurately 
predicted.  

 
Figure 1. Human pose estimation using a ResNet-based 
machine learning model. The input frame (left) is processed 
to predict human body keypoints (center, green), which are 
subsequently structured into a kinematic skeleton (right, 
blue), effectively visualizing the estimated human pose. 
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2.2  Model Selection and Architecture 
 

Model selection for HPE involved choosing the right neural network based on the research project requirements 
(dataset availability and accuracy) and compute constraints (GPU and processing power). DeepPose is a classic neural 
network for HPE that follows the cascade regression approach for producing accurate keypoints. This top-down 
approach iteratively refines initial coarse joint predictions from the full image, marking a significant transition and 
establishing the groundwork for future deep learning methods in HPE (Toshev and Szegedy, 2014). 

Stacked hourglass for HPE makes use of several hourglass modules that predict joint locations in stages. The 
model architecture utilizes convolutional and max pooling layers to process data down to low resolution. After this 
process, the model then does up-sampling and combines features across different scales. This process is repeated to 
fine tune the results (Newell et al., 2016). The Stacked Hourglass network was eliminated because it is computationally 
expensive. 

ResNet is a Convolutional Neural Network (CNN) that has residual connections between layers. These residual 
connections are also called skip connections because they move information by skipping the previous layer (Xiao and 
Wanggen, 2017). The model does not use fully connected layers. The lack of these layers allows for the model to 
output the confidence maps that predict the key point location.  

DeepPose and Stacked Hourglass models primarily focus on achieving high keypoint localization accuracy within 
single-domain benchmarks. In contrast, this study emphasizes cross-domain generalization, utilizing data 
augmentation, transfer learning, and bias mitigation to improve model robustness. 

This research project is based on a modified ResNet-50 architecture proposed in "Simple Baselines for Human 
Pose Estimation" (Xiao et al., 2018). The ResNet architecture uses the residual connection between blocks to preserve 
gradients and data. Each ResNet block is composed of different convolutional layers and filters. As shown in figure 2 
below, at the end of the model, a few deconvolutional layers upscale the output to produce the feature maps needed to 
predict the keypoints. The input image size is 256x256 with rectified linear unit (ReLu) activation. Each layer has 256 
filters and a 4x4 kernel. The model predicts 16 heat maps using a 1x1 final convolution stage, one for each joint (Xiao 
et al., 2018).  

ResNet was selected due to its balance of 
accuracy, simplicity, and efficiency. Its residual 
learning structure enables deeper and more stable 
networks, improving feature extraction when 
generating high-resolution heat maps for keypoint 
detection. Compared to older models like 
DeepPose and computationally intensive models 
like Stacked Hourglass, the ResNet model 
generalizes effectively across different domains, 

making it particularly useful for practical applications where data variability is high.  
Mean Squared Error (MSE) Loss is a common metric used to train HPE models by quantifying the error between 

predicted and ground truth joint locations.  
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N, y, and 𝑦. indicate the quantity of samples, the ground truth value, and the predicted value, respectively.  
 

The MSE Loss function aggregates the difference of each joint's heatmap and finds the loss. The ground truth 
heatmaps were calculated from pre-annotated keypoints. Each joint was given a feature map and a Gaussian 
distribution with a sigma of 2 was used to generate the points. Because this function squares the error, any large errors 
get magnified and get more weight (Samkari et al., 2023). This will force the model to focus on these large errors and 
correct itself.  

The Percentage of Correct Keypoints (PCK) is a common metric for HPE which looks at how close each predicted 
joint is to the ground truth. This method uses a set threshold value to judge how close each predicted joint needs to be 

 
Figure 2. Visualization of ResNet Model Architecture showing 
different convolutional layers (Xiao et al., 2018) 
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to the ground truth joint. A more commonly used metric is the PCKh@0.5 metric to evaluate the model performance. 
This metric uses 50% of the head segment length as the threshold which allows each image to have a unique threshold 
that is scaled to the subject of the image (Mykhaylo et al., 2014). A higher PCKh score indicates better performance. 
 
2.3 Data Preprocessing and Augmentation  
 

Many transformations were applied to the data during preprocessing the data. Each image in the MPII dataset has 
details about the person's center and the scale of each image. To increase accuracy, the program resized and cropped 
images to ensure that the human is the main focus for each image. The image gets resized to 256 x 256 This allows 
for better training accuracy because each person is about the same size.  

This ML model uses 3 types of data augmentations to vary the data during training. The program applies scale, 
rotation, and horizontal flip. The rotation and scale are done randomly, while the flip has a 50% chance of being 
applied to the image. This allows for varied data when training the ML model. By default, an image can be rotated by 
±30 degrees while an image can be scaled by ±25%. 
 
2.4  Model Training Process  
 

Several hyperparameters were used during the training of this model. The ML model was trained on 140 epochs 
at a learning rate of 0.0001. To improve efficiency, the learning rate is designed to change as the model progresses 
through training. At the 90 and 120 epoch marks, the learning rate is multiplied by a factor of 0.1. This is shown in 
the above graph because the PCKh stabilizes past epoch 90. This model also used a batch size of 32. 

As shown in figure 3, the graph shows how each 
joint's accuracy increases over time. The graph 
highlights how the head joint increases much faster 
than the ankle joint. This is due to how each joint is 
represented in the training dataset. Many lower body 
joints are frequently missing in images. This leads to 
fewer images that the model can use to learn these 
features. Thus, the model takes longer to increase the 
accuracy of these specific joints.  

This ML model was trained on a single NVIDIA 
T4 Tensor GPU using Google Colab and took about 
16 hours of training time on 50% of the data. Due to 
Google Colab restrictions, reducing the data size 
from 24k to 12k images was needed to lower training 
times. The project is based on the ML model using the Pytorch library with a ResNet backbone. Training time was 
limited to 16 hours per experiment when training using Google Colab. The second limitation is computational power. 
When using Google Colab, the experiments were restricted to using one T4 GPU for training and testing. 
 
3.  Results  
 
3.1  Data Augmentation (Rotation and Scale)  
 

 The experiment tested the impact of data augmentation (rotation and scale) on PCkh@0.5 during training. To 
effectively test the impact of data augmentation, 3 different models were trained with different magnitudes of 
augmentation. The rotation factor rotated the images at a random percentage within a specific range. For example, the 
strong augmentation chose a rotation between -15 and 15. 
The scale factor also scaled the image within the specified 
threshold.  

Each version was trained on the MPII training data  

 
Figure 3. Graph shows the PCK@0.5 (prediction score) over 140 
training epochs for each joint.  

Table 1. Characteristics of different levels of augmentation 
Augmentation Type Normal Weak Strong 

Rotation Factor 0° 5° 15° 
Scale Factor 1% 6% 12% 
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and tested on the MPII and LSP 
testing data to observe how well 
the model performs against new, 
unseen data.  

As shown in Figure 4, the 
LSP dataset exhibits a tight 

clustering of joints, with most points concentrated near the center of the frame. In contrast, the MPII dataset displays 
a much wider spread of joint positions across the image space. This highlights that strong data augmentation helped 
the model encounter a broader range of 
scenarios, making it more robust to the 
variety of poses present, particularly in 
the LSP dataset. 
 
3.2 Minimizing Data Bias  
 

In this experiment, a new 
"diversified" training dataset was created 
to minimize bias in the trained model. The 
new training set is composed of 
previously used 12k MPII training data 
but was supplemented with 700 images of 
LSP training data. The goal was to expose the ResNet50 ML model to a variety of data sources to ensure diversity 
during training which would allow the ML model to better generalize to a different domain. This diversity helped the 
model learn robust representations.  

The observation during the experiment 
found that each dataset might be skewed 
slightly towards a location or joint visibility. 
The experiment indicates some missing key 
points in the datasets.  

Based on the percentage of missing 
joints depicted in Figure 5, the MPII dataset featured a greater number of upper-body annotations compared to the 
LSP dataset, which showed a higher prevalence of lower-body annotations. By merging the two datasets, these skews 
were corrected, which helped to minimize the risk of overfitting and improved the performance of the HPE model. 
 
3.3 Transfer Learning  
 

Transfer learning is a ML technique in which 
knowledge learned from a task is harnessed to improve 
the performance on a related task. Transfer learning is 
particularly effective when fine-tuning because the 
process takes advantage of previously learned features 
such as edges and patterns that are useful for human 
pose estimation. The goal is to utilize transfer learning 
to allow the ResNet50 ML model to better generalize 
across datasets.  

The process for this experiment was to first train 
the ML model on the MPII dataset as the source. 
Consequently, transfer learning was then used to train 
the ML model on the LSP dataset. 

Table 2. Score of each ML model trained with its respective augmentation level 

Augmentation Level MPII 
PCKh@0.5 

LSP 
PCKh@0.5 

Average 
PCKh@0.5 

Normal 85.60% 86.53% 86.07% 
Weak 86.22% 89.19% 87.71% 
Strong 86.57% 91.25% 88.91% 

 
Figure 4. Visualization of keypoint distributions in the MPII and LSP 
datasets. Each dot represents the location of a specific body joint across all 
samples, with different colors indicating different keypoints. 

Table 3. Score of each ML model trained with its respective training 
dataset. 

Dataset MPII 
PCKh@0.5 

LSP 
PCKh@0.5 

Average 
PCKh@0.5 

MPII 86.38% 79.90% 83.14% 
Mixed (MPII + LSP) 85.68% 83.04% 84.36% 

 
Figure 5. Visualization of missing body joints in the MPII and 
LSP datasets. 
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In the table above, it is 
apparent that the transfer learning 
without changing the learning 
rate caused an overall loss in 
performance. While the 
PCkh@0.5 score increased by 
1% for the LSP dataset, the 

PCKh@0.5 score decreased by 5% for the MPII dataset. This led to a 2% reduction in the overall score. It is evident 
that the model forgets features of MPII data when training on a low amount of LSP data. When a neural network starts 
forgetting features of the previous dataset during transfer learning, it is called catastrophic forgetting.  

To prevent this catastrophic forgetting, the experiments were rerun with a smaller learning rate which would 
prevent the model from 
overriding the weights created 
during the initial training.  

The learning rate is a critical 
hyperparameter that controls how 
the ML model adapts to the 
problem. Increasing this 
parameter results in faster 
training time and a smaller 
learning rate results in a more 
gradual training process. 

4.  Discussion  
 

The graph below depicts the results of the ML model performance for the experiments. As shown in figure 6, the 
bar chart illustrates the final 
prediction accuracy for MPII, LSP, 
and the average of both.  The first 
experiment with strong augmentation 
that is based on rotation factor (15°) 
and scale factor (12%) achieved a 
final average PCKh@0.5 score of 
88.91% from the earlier average of 
83.14%. This strong augmentation 
increased the variability in the 
training data by exposing the model 
to different orientations of the same 
images. This resulted in a more robust 
model.  

In the second experiment, data bias was minimized by diversifying the dataset. This has achieved a final 
PCKh@0.5 average score of 84.36% from the earlier average of 83.14%. The results of this experiment show a 
minimal decline in the PCkh@0.5 score for the source MPII dataset, while an approximate 4% increase can be seen 
for the target LSP dataset and a 1% increase in the average score. The model performance improved as a result of the 
balanced representation during training.  

In the third experiment, with transfer learning, the ResNet-50 model achieved a final PCKh@0.5 average score 
of 84.28% from the earlier average of 83.14%. This is an overall increase of 1% in the average PCKh score using the 
optimal learning rate of 0.0001.  

The final model improved PCKh@0.5 metric by 5.30% on average from a baseline of 83.14%, with a 95% 
confidence interval of [4.87%, 5.70%], and a p-value < 1e-7. This indicated a substantial and statistically reliable 

Table 4. Score of each model trained with Transfer Learning   

Training Type MPII 
PCKh@0.5 

LSP 
PCKh@0.5 

Average 
PCKh@0.5 

Without Transfer learning 86.38% 79.90% 83.14% 

Transfer Learning without 
changing learning rate 81.17% 81.01% 81.09% 

Table 5. Score of each model with Transfer Learning and its respective Learning Rate 

Learning Rate MPII 
PCKh@0.5 

LSP 
PCKh@0.5 

Average 
PCKh@0.5 

Normal MPII without Transfer 
learning 86.38% 79.90% 83.14% 

Learning rate @ 0.0001 84.79% 79.62% 82.21% 

Learning rate @ 0.00005 85.27% 81.13% 83.20% 

Transfer Learning with optimal 
learning rate @ 0.00001 86.46% 82.09% 84.28% 

 
Figure 6. Comparison of PCKh@0.5 (prediction scores) across different 
experimental setups and datasets.  
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enhancement in pose estimation accuracy. These strategies enabled the ResNet-50 model to improve its performance 
in accurately predicting keypoints leading to a more robust and generalizable model for HPE.  
For future scope, this research could be extended to multi-person HPE using CrowdPose as a dataset. This research 
could also be extended to include 3D Human Pose estimation. 
 
5.  Conclusion  
 

This research project has demonstrated various methods to improve the reliability and robustness of the ResNet-
50 ML model for 2D human pose estimation (HPE) across different data domains. PCKh@0.5 score is a widely used 
metric to measure the accuracy of keypoint predictions for HPE. Based on the 3 experiments, the model with strong 
data augmentation (rotation and scale) increased the PCKh@0.5 score by more than 5%. This indicates that strong 
data augmentation was highly effective in enabling the ResNet-50 ML models to generalize across MPII and Leed 
Sports Pose (LSP) datasets.  

By enhancing cross-dataset generalization using techniques like data augmentation and transfer learning, the 
ResNet-based HPE model became more adaptable to challenges commonly encountered in practical deployments. 
These findings contribute to technical advancements in HPE as well as highlight its broader significance in creating 
robust and accurate machine learning models for analyzing dynamic human movements in real-world scenarios.  
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