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Abstract 

In this paper, the primary objective is to create and validate a predictive model using neural networks to forecast high 
school students' likelihood of pursuing higher education to contribute to the body of knowledge in educational 
planning and policymaking. The foundation of the analysis rests upon a comprehensive dataset, encompassing diverse 
information about 1000 students. Pertinent factors considered include the nature of the educational institution 
attended, the institutional quality, gender demographics, and other relevant parameters. This study leverages the robust 
capabilities of Keras, a widely acclaimed open-source library nested within the TensorFlow framework. The modeling 
approach adopts a neural network architecture, featuring a sigmoid activation function in the output layer. To mitigate 
the potential risk of overfitting, this study integrates regularization techniques into the model construction process. 
The dataset undergoes a partitioning into a training dataset, constituting 75% of the samples, and a validation dataset, 
comprising the remaining 25%. The training process involves the application of the neural network on the training 
set, facilitating the refinement of the model's parameters. Subsequently, the validation set is employed to assess the 
model's generalization performance, affirming its efficacy in extrapolating insights to novel examples. This research 
not only showcases the utilization of cutting-edge machine learning tools but also emphasizes the significance of 
thoughtful data preprocessing and model validation methodologies. The results gleaned from this study contribute 
valuable insights into the predictive factors influencing a student's likelihood of pursuing higher education, thereby 
fostering a nuanced understanding of educational trajectories. 
 
Keywords: Predictive modeling, Keras, TensorFlow, Neural networks, Regularization, Machine learning tools, 
Educational trajectories 
 
1. Introduction 
 

Machine learning, also known as artificial intelligence, is a field of computer science that uses data to make 
predictions and decisions (Alpaydin 2010). Machine learning has found applications in numerous fields. Examples 
include applications in the medical field, where machine learning is used for the diagnosis of diseases, such as heart 
disease, diabetes and pneumonia; applications in the banking business, where machine learning is used to make 
decisions on loan applications; applications to the real estate business, where machine learning is used to price real 
estate; applications to self-driving cars, where machine learning is at the core of the software used by self-driving cars; 
applications to machines’ playing chess; and robots that can carry out numerous tasks (Mohri et al., 2018). 

The task of predicting college enrollment is crucial for educational institutions, policymakers, and society at large, 
as it directly influences the strategic allocation of resources, the implementation of targeted interventions, and the 
overall accessibility of higher education. Research has shown that early identification of students who are less likely 
to pursue higher education can enable targeted support, thereby increasing enrollment rates and reducing educational 
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disparities (Bastedo & Jaquette, 2011). Furthermore, accurate predictions of college enrollment trends help institutions 
optimize their offerings and resources in response to expected demand, thus improving educational outcomes and 
student success (Hoxby & Avery, 2013). By employing predictive analytics, educators and policymakers can also 
better understand the multifaceted factors influencing students' decisions to pursue further education, including socio-
economic backgrounds, academic performance, and personal aspirations (Domina et al., 2017). This understanding is 
pivotal in crafting policies and interventions that aim to make higher education more equitable and accessible to all 
segments of society, aligning with the goals of promoting lifelong learning opportunities and supporting economic 
development through a well-educated workforce (OECD, 2020). 

Recent advancements in machine learning have significantly contributed to understanding of predictive modeling 
in educational settings. For example, Basu et al. (2019) utilized various supervised machine learning techniques to 
analyze data from over 11,000 students, aiming to predict college commitment decisions. Their study represented an 
essential step forward, leveraging logistic regression to achieve notable success in forecasting student decisions 
following admission offers. This research underscored the potential of machine learning to refine the predictions about 
student behavior, crucial for educational planning and resource allocation. Aulck et al. (2017) used numerous machine 
learning techniques including logistic regression, random forests, and k-nearest neighbors to predict student dropout 
in higher education. Moreover, a study by Golden et al. (2021) compared many different machine learning techniques 
used to predict a student’s chances of admission to any university, underscoring the methodological diversity and 
numerous attempts made to develop predictive models in educational contexts. 

However, despite these advancements, there remain considerable gaps in society’s comprehensive understanding 
of college enrollment predictions. One notable limitation of existing research, including the study by Basu et al., is 
the focus on predicting immediate post-admission behaviors rather than addressing the broader, more complex 
question of what influences a student's decision to pursue higher education from a holistic perspective. Furthermore, 
much of the current literature has concentrated on singular aspects of the enrollment process, such as commitment 
post-admission or specific factors like academic performance and financial aid, without integrating these elements 
into a unified predictive model that encompasses a wider range of academic, socio-economic, and personal factors 
that influence a student's educational trajectory. Evidently, the lack of a predictive model to particularly predict a 
student’s continuation into higher education leaves a hole in the understanding of forecasting students’ educational 
trajectories. 

In response, the primary objective of this study is to develop and validate a machine learning model capable of 
accurately predicting a high school student's likelihood of enrolling in higher education. This research seeks to bridge 
the gap in current academic literature by leveraging advanced neural network techniques, particularly focusing on the 
efficacy of using socio-economic and academic variables to forecast educational trajectories. By employing a 
comprehensive dataset and a rigorous methodological framework, this paper aims to provide insights into the key 
factors influencing college enrollment decisions. This study hypothesizes that a predictive model, developed using 
sophisticated machine learning techniques, will significantly outperform traditional statistical methods and simple 
regression models in forecasting college enrollment, demonstrating superior accuracy and reliability. The anticipated 
findings aim to contribute to the body of knowledge in educational planning and policymaking, offering a predictive 
tool that can assist in the development of targeted interventions to support student transitions to higher education. 
Moreover, the rigorous methodological approach adopted in this study ensures the robustness and validity of potential 
results, bolstering confidence in their applicability across different contexts. This confidence is vital, as it gives this 
research the potential to shape educational strategies and policies to enhance accessibility and equity in higher 
education. The computational model is built using a data set obtained from the website Kaggle (Mukti 2022). This is 
a website that has a large collection of data sets, available to the public, that can be used to develop machine learning 
models. 

This paper is organized as follows. It is first explained what supervised learning is. This is a subclass of problems 
within the larger class of problems of machine learning. The predicting college enrollment example belongs to this 
category of supervised learning. This study then explains the structure of the data sets in supervised learning problems, 
and explain the concept of examples, features and labels, as well as the process known as integer encoding. This study 
explains these concepts in general, as well as in the going to college data set. Next, this study explains what logistic 
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regression models are; while these models are not used in the problem, it is instructive to start by explaining them. 
Then, this study explains what neural network models are. This is the class of models used to predict whether a student 
will go to college. This study explains the notion of parameters, training set, error on a set of examples, and how the 
parameters are selected by minimizing the error on the training set. This study also explains the technique of 
regularization and its use in addressing the issue of overfitting. This study finishes by illustrating the concepts 
explained by developing a model to predict whether a student will go to college. This study discusses the accuracy of 
the model on a set of examples that are not part of the training set. This set is called the validation set. The paper is 
finished with a small discussion and conclusion.   
 
2. Supervised learning and the data set  
 

The specific problem addressed is the prediction of college enrollment. This study utilizes a comprehensive 
synthetic dataset which closely resembles real data (due to the lack of available real data and data privacy concerns) 
derived from the machine learning website Kaggle, containing detailed records for 1,000 high school students aiming 
to predict their likelihood of enrolling in higher education. All features named come from research papers. Data 
correlation was measured using a correlation matrix to mimic real data before assigning labels (Mukti 2022). This 
dataset is publicly accessible for replication purposes and was used in accordance with Kaggle's terms of service. The 
information about each student is: the type of school the student attends, the quality of the school (where A is better 
than B), the gender of the student, the student’s interest in going to college, the student’s type of residence, their 
parent’s age, their parent’s monthly salary in IDR, their parent’s house area in square meters, the student’s average of 
grades, whether their parent was ever in college, and whether or not the student will go to college. These features are 
used so that academic and socioeconomic variables are accounted for. The selection of both academic and 
socioeconomic variables is grounded in existing literature (U.S. Department of Education, n.d.) indicating their 
significant influence on educational outcomes, thereby ensuring a comprehensive analysis. An important aspect of the 
dataset was its balance. The number of students who enrolled in college ('True') compared to those who did not ('False') 
was evaluated to determine if a class imbalance existed. With 500 instances for 'True' and 500 for 'False' within the 
dataset, the dataset is balanced.  The balance of the dataset is a crucial factor in the development and evaluation of the 
predictive model. Imbalances can lead to misleadingly high accuracy, as models might predict the majority class more 
often. Therefore, ensuring the dataset is balanced is important for maintaining the integrity of the evaluation metrics. 
To prepare the data for machine learning analysis, integer encoding is applied to these categorical variables, where 
each unique category is assigned a unique integer value. Part of this data set is illustrated in Table 1. The entries in 
the first row are abbreviations of the information in each column. They have the following meaning:  

The entry in the column TOS has a 1 if the student attends an academic school and a 0 if the student attends a 
vocational school. 

The entry in the column QOS has a 1 if the student attends a school accredited as “A” and a 0 if the student attends 
a school accredited as “B.” 

The entry in the column GEN has a 1 if the student is male and a 0 if the student is female. 
The entry in the column INT has a 4 if the student is very interested in going to college, a 3 if they are interested, 

a 2 if they are uncertain, a 1 if they are less interested, and a 0 if they are not interested. 
The entry in the column RES has a 1 if the student lives in an urban residence and 0 if they live in a rural residence. 
The entry in the column Age has the age of the student’s parent. 
The entry in the column SAL has the monthly salary of the student’s parent in IDR, or Indonesian rupiah. 
The entry in the column HA has the parent’s house area in square meters. 
The entry in the column GA has the student’s average of grades on a scale from 0-100. 
The entry in the column WIC has a 1 if the parent was ever in college and a 0 if the parent was not in college. 
The entry in the column GTC has a 1 if the student will go to college and a 0 if the student will not go to college. 
Table 1 shows the information about only two students, but the dataset contains information about 1000 students. 
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Table 1. Data of two of the examples in the data set. 
TOS QOS GEN INT RES Age SAL HA GA WIC GTC 

1 1 1 1 1 56 6950000 83.0 84.09 0 1 
1 1 0 4 1 57 5250000 75.1 86.79 0 0 

 
The problem considered in this paper belongs to the class of problems known as supervised learning. A first 

characteristic of this class of problems is that the data set consists of information about a collection of units. In the 
data set, the units are the students. In the language of machine learning, the units are called examples. Thus, the 
examples are the students in the data set. 

A second characteristic about supervised learning problems is that the information the data set contains about 
each example is of two types: the label or target variable, and the features. The label is what one eventually wants to 
predict for examples that are not in the data set. In the data set considered, the label is whether the student will go to 
college or not. The rest of the information about each example is the features. Thus, in the data set, the features are 
the information stored in the columns TOS, QOS, GEN, INT, RES, AGE, SAL, HA, GA, and WIC. 

Before these features are entered into the model, these features must be scaled. Feature scaling is the process of 
normalizing the data. Let 𝑥!, 𝑥", … , 𝑥#  be a list of the features. The scaled list is then computed as 
$!%&
'
,   $"%&

'
,   … ,   $#%&

'
 where µ is the mean of the features and σ is their standard deviation. Feature scaling helps 

ensure data is on the same scale and minimizes the effect of too large or too small values, thus helping the model’s 
accuracy and performance. 

The objective of the rest of this paper is to use the data set of the students to develop a computational model that 
can predict if a new student, not in the data set used to develop the model, will go to college. To make its prediction, 
one needs to provide the model with the features of the student. The rest of the paper will explain the theory behind 
the development of the model as well as the results obtained. 

 
3. Binary Classification Problem 

 
Each student will either go to college or not. In other words, the label takes one of two values: 1 if the student 

will go to college and 0 otherwise. Problems where the label takes one of two possible values are known as binary 
classification problems. Each example belongs to one of two categories, according to the value of its label. One of the 
categories is identified with the number 0 and the other with the number 1. The categories are called category 0 and 
category 1, respectively.  In this case, 1 means the student will go to college and 0 means the student will not go to 
college. 

A model for binary classification problems is a function that takes as input the features of an example and gives 
as output a number between 0 and 1. As is the common practice, this number is denoted by . As it will be explained 
soon,  is a prediction of the label of the example. Note that  is a function of the features of the example. In this case, 
each example has 10 features. These features are denoted by  and the meaning of the features are as in 
the columns of Table 1. Thus, given a student,  if the student attends an academic school, but  if the 
student attends a vocational school. Similarly,  if the school’s quality is A, but  if the school’s quality is 
B. The meaning of the other features, , is explained similarly from Table 1. Since  is a function of the 
features, written as . The prediction of the model is that the example with features  
belongs to the category 1 if  or to the category 0 if .  

It has not yet been explained how the function  is selected. This will be done in subsequent 
sections. For now, consider the following example. Assume that a student has the following features:   

 (the student attends an academic school) 
 (the school’s quality is A) 
 (the student is female) 
 (the student is interested in going to college) 

̂y
̂y ̂y

x1, x2, …, x10
x1 = 1 x1 = 0

x2 = 1 x2 = 0
x3, …, x10 ̂y

̂y = ̂y (x1, x2, …, x10) x1, x2, …, x10
̂y (x1, x2, …, x10) > 0.5 ̂y (x1, x2, …, x10) < 0.5

̂y (x1, x2, …, x10)

x1 = 1
x2 = 1
x3 = 0
x4 = 3
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 (the student’s residence is urban) 
 (their parent is 48 years old) 

 (their parent’s monthly salary is 10 million rupiah) 
 (their parent’s house area is 83 square meters) 
 (the student’s average of grades is 91.6) 

 (their parent went to college) 
Assume that when these features are fed to the model, the output is 0.8, i.e. 
 

.  
 

This means that the model predicts that the student will go to college. The next sections describe how the function 
 is constructed. 

 
4. Logistic regression 

 
Logistic regression is a machine learning technique that is used to develop models in binary classification 

problems. While this is not the technique that used in this paper, it is instructive to explain it in this section. It first 
must be explained what the sigmoid function is. 

The sigmoid function is the function 

. 

The graph of the sigmoid function is displayed in Figure 1. 
The important properties of the sigmoid function 

are: 
1.  for all . 
2.  is an increasing function of . 
3.  becomes arbitrarily close to  as  becomes 
large in absolute value but negative. 
4.  becomes arbitrarily close to  as  increases. 
5. . 
 

In the case of the going to college problem, each 
example has 10 features. Logistic regression is a 
machine learning technique that assumes the prediction 
of the label to have the functional form 

 
  

 
where, as before,  are the features of the examples, but  are some numbers known as 
parameters. The model is determined by the parameters. If the parameters are changed, the model changes and thus 
the predictions made by the model.   
 
5. Neural networks 
 

While very attractive for its simplicity, logistic regression has its limitations. If the data is not linearly separable, 
logistic regression will not work well. Fortunately, the ideas of logistic regression have been extended to methods that 
overcome the mentioned limitations. One of those methods, the one that used in this paper, is known as neural 
networks. 

x5 = 1
x6 = 47
x7 = 10000000
x8 = 83.0
x9 = 91.6
x10 = 1

̂y (1,1,0,3,1,47,10000000,83.0,91.6,1) = 0.8

̂y (x1, x2, …, x10)

σ (x) = 1
1 + e−x

0 < σ (x) < 1 x
σ (x) x
σ (x) 0 x

σ (x) 1 x
σ (0) = 0.5

̂y = ̂y (x1, x2, …, x10) = σ (w1x1 + w2x2 + … + w10x10 + b)

x1, x2, …, x10 w1, w2, …, w10, b

 
Figure 1. Plot of the graph of the sigmoid function. 
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The function that used to make the predictions is a neural network. There are several types of neural networks. 
They will not be described in deep detail. Instead, the discussion will be focused on the basics of a fully connected 
neural network. 

It is first discussed what is known as the architecture of a network, which is controlled by variables known as 
hyperparameters that one is free to select in the development of the model. The architecture can be described as follows: 

1. A network is formed by a sequence of layers. 
2. The first layer (layer 0) is called the input layer. 
3. The last layer (layer ) is called the output layer. 
4. The  layers that are neither the input nor the output layer are called hidden layers. 
5. Layer  has  nodes. If one has  features and  labels,  and . 
6. Each layer  has an associated activation function . 
7. In a binary classification problem, such as the problem of predicting whether a student will go to college or not, 

. 
8. The input of the input layer is , the features of the example (the student in this case). 
9. The output of a layer is the input of the next layer 
10. The output of the output layer is , the prediction of the label of the example by the network. 

 
Figure 2 illustrates the architecture of a neural 

network. 
There are several types of layers. The ones used in 

this paper are known as dense layers, which take as input 
a 1d-array with  components and give as output a 
number. 

Furthermore, there are several types of activation 
functions. The layers in the model except the output layer 
use the rectified linear unit (ReLU) function, which is 
defined as .  

Figure 3 displays the graph of the ReLU function. 
 

One reason this activation function is used in the model is due 
to its simplicity, as demonstrated in Figure 3. The model can thus 
take less time to train or run. Additionally, since the ReLU function 
gives output zero for all negative inputs, the network will be sparse, 
which results in a concise model with better predictions and less 
noise. 

In addition, the network depends on a set of numbers known as 
parameters. As straight lines are determined by their y-intercept and 
slope, neural networks are determined by parameters. One should 
think of parameters in networks as the y-intercept and slope in 
straight lines. 

For every node not in the input layer, there is a parameter. The parameter of node  in layer  is denoted . 
Additionally, for every edge there is a parameter. If the edge connects node  of layer  with node  of layer , the 
parameter is denoted . 

The rules that define this function are more complex than those of logistic regression, and are as follows: 
1. Each node has data associated with it. 
2. The data of node  of layer  is denoted by . 

L
L − 1

l n[l] k s n[0] = k n[L] = s
l f [l]

f [L] = σ
X

̂y

ℓ

f (x) = max(0,x)

i l b[l]
i

i l − 1 j l
w[l]

ij

i l a[l]
i

 
Figure 2. The architecture of a neural network. 

 
Figure 3. The graph of the ReLU function. 
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3. The data of node  of layer 0 is , the th feature of the example. Thus, . 

4. For , . 

5. . 

 
To create the model, one provides as input of the neural network the training set (which will be discussed in a 

later section) as well as the hyperparameters, and obtains as output the parameters  and  which minimize the 

error on the training set. 
The predictive model was constructed using Python, a versatile programming language favored for its extensive 

libraries supporting machine learning applications (Python.org, n.d.). Central to the model's development was the use 
of Keras, a high-level neural networks API, operating on top of TensorFlow, which provided the necessary 
infrastructure for designing and training deep learning models (Chollet et al., 2015). This study utilized the 
TensorFlow 2.x version, which offers an intuitive interface for constructing neural networks through layers of 
abstraction. Data preprocessing, essential for model accuracy, was conducted using the Pandas library for data 
manipulation and scikit-learn for scaling, ensuring the dataset was suitably formatted and normalized for training 
purposes. (McKinney et al., 2010; Pedregosa et al., 2011). 

The neural network used in this study consists of an input layer with 10 nodes, corresponding to the number of 
features of a given example. The model has three hidden dense layers of 20, 8, and 2 nodes respectively. Each uses 
the ReLU activation function, which was explained earlier in this section. The output layer consists of a single node 
with the sigmoid activation function, since this is a binary classification problem, as described previously. The output 
of the model, , is a number between  and  where  means the model predicts the student will go to college 
and  means the model predicts the student will not go to college, as discussed earlier.  
 
6. Binary cross entropy error 
 

Assume that the features of an example are . Assume that the label of that example is known and that 
this label is . Note that  is either 1 or 0. On the other hand, the model predicts the label of this example to be . Note 
that . The binary cross entropy error on this example is defined to be

. 
While this paper will not go into the details of the binary cross entropy error, it is listed here its properties that 

are most relevant: 
 
1. . 
2. If  , then . 
3. The closer  is to , the smaller  is. 
 
For the reasons listed above,  is a measure of the difference between  and . Thus,  can be 

considered as a measure of the error the model makes in predicting the label of the example. For example, assume that 
 and  , then 

 
. 

 
On the other hand, if  and  , then  
 

. 
 

i xi i a[0]
i = xi

1 ≤ l ≤ L a[l]
j = f [l] b[l]

i +
n[l−1]

∑
i=1

a[l−1]
i w[l]

ij

̂yj = a[L]
j

b[l]
i w[l]

ij

̂y 0 1 ̂y > 0.5
̂y < 0.5

x1, x2, …x10
y y ̂y

0 < ̂y < 1
BCE (y, ̂y) = − (y log( ̂y + (1 − y)log(1 − ̂y))

BCE (y, ̂y) ≥ 0
y = ̂y BCE (y, ̂y) = 0

y ̂y BCE (y, ̂y)

BCE (y, ̂y) y ̂y BCE (y, ̂y)

y = 1 ̂y = 0.7

BCE (y, ̂y) = BCE (1,0.7) = − log(0.7) = 0.15

y = 1 ̂y = 0.9

BCE (y, ̂y) = BCE (1,0.9) = − log(0.9) = 0.05
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Notice that the better prediction of   gave the 
smaller cross entropy error. Thus, the smaller the error, the 
better the predictions, and it is sought to minimize this error to 
obtain the best predictions. 

The mean binary cross entropy error on a set of examples 
is the average of the binary cross entropy errors on the 
examples in the set. This is illustrated with the help of Table 2, 
where the labels y, the predicted labels y and the binary cross 
entropy errors  of three examples are displayed. The 
average of those errors is also shown, which is the mean binary cross entropy error on this set of three examples. 
 
7. Training and validation sets 
 

The examples on the data set used to develop the model are split into two sets: the set of training examples, or the 
training set, and the set of validation examples, or the validation set. As is common practice, the training set will 
contain 75% of the examples and thus, the validation set will contain 25% of the examples. This split is done randomly. 
In other words, given an example in the original data set, the probability that this example will belong to the training 
set after the split is 75%. Note that both the features and the labels of the examples are in both the training and the 
validation set. The reason for this split is described in later sections. 
 
8. Selection of the parameters 
 

Note that this binary cross entropy error on the training set depends not only on the values of the features and 
labels of the examples in the training set, but also on the parameters  and . If those parameters are changed 

(keeping the training set the same), the binary cross entropy error also changes.  
In a neural network the parameters that are selected are those that make the mean binary cross entropy error on 

the training set as small as possible. This paper will not go into any details on the algorithms used to find those 
parameters. In practice, these parameters are usually found using software libraries that are available to be used by the 
public at no cost. In this case, the Keras library is used to select the parameters that minimize the mean binary cross 
entropy error. 

To illustrate the above discussion, consider Table 3, where a training set is shown with only six training examples. 
Each example has only one feature, so this Table is unrelated to the going to college data set considered in this paper, 
where each example has 10 features. In that table, MBCE means the mean binary cross entropy error. Note that, with 

the parameters  and 
, the mean binary cross 

entropy error is 4.56. On the 
other hand, with the 
parameters  and 

, the mean binary 
cross entropy error is 0.33. 
This means that the model 
with the parameters 

 and  is 
better than the model with 
the parameters  and 

. This is evident by looking at the column with the predictions y from each model. In fact, the parameters 
 and  gives the smallest mean binary cross entropy error, i.e. a model with other parameters gives 

a larger mean binary cross entropy error. Note also that this paper has not, and will not, explained how these optimal 

y = 0.9

BCE (y, ̂y)

w[l]
ij b[l]

i

w = 1
b = 0

w = 3.83
b = − 0.89

w = 3.83 b = − 0.89

w = 1
b = 0
w = 3.83 b = − 0.89

Table 2. Binary cross entropy errors of three 
examples and the mean binary cross entropy 
error on the set of these three examples together. 

y   
1 0.9 0.05 
0 0.2 0.1 
0 0.1 0.05 

Mean   0.67 

Table 3. Example that illustrates that the parameters that lead to the smallest 
possible mean cross entropy error leads to better predictions. 

= feature = feature = predicted label with 
 and   

= predicted label with 
 and   

-1 0 0.27 0.01 
-0.8 0 0.31 0.02 
0.2 1 0.55 0.47 
0.4 0 0.60 0.66 
0.8 1 0.69 0.90 
1 1 0.73 0.95 

MBCE  4.56 0.33 

̂y BCE (y, ̂y)

BCE (y, ̂y)

x y ̂y
w = 1 b = 0

̂y
w = 3.83 b = − 0.89
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parameters,  and  are found. This paper only mentions that the Keras library is used to find these 
optimal parameters. 

Now go back to the go to college data set. The corresponding training set is used to find the optimal parameters, 
i.e. the parameters that minimize the mean binary cross entropy error on the training set. 
 
9. Overfitting and regularization 
 

In most data, the value of the labels is not truly a function of the features. The value of the labels is made up of 
two components, the deterministic and the random components. The deterministic component is a function of the 
features, but the random component is not. Denote by ,  and  the label, the deterministic component of the label 
and the random component of the label, respectively. While  and  are functions of the examples,  is a function 
only of the features of the examples. In other words,  

 
 

 
Denote the features by . The deterministic component is the average of the labels of all the examples whose 

features have the same values, or in other words,  
 

 
 
To illustrate the concepts introduced above, consider as an example a dataset where the examples are persons, the 

features are the their weight, and their labels are their height. In this case,  is the average height of all the persons 
whose weight is . 

The goal of supervised learning is to come up with a model that predicts , the deterministic component of the 
label. In the context of the example of the previous paragraph, the best one can hope for is to develop a model that 
given a weight , predicts the average height of people with that weight. 

Note that the random component of the label, , is unique to the example under consideration. Thus, knowing  
for an example does not help predict the label of another example. Going back to the weight-height context,  of a 
person is how much taller (if , shorter if ) the person is in comparison to the average height among persons 
with the same weight. 

Sometimes a model predicts the labels of the examples very closely, but it does not predict the deterministic 
component of the label that well. Consequently, the model does not work as well on examples that are not part of the 
training set. The model is being influenced too much by the random components of the labels of the training set. This 
effect is known as overfitting. 

Note that if one continues increasing the complexity of the model, the error on the training set continues 
decreasing. But this is due to the model capturing the random components of the labels in the training set too much. 
This leads to overfitting. As a result, the error on the validation set eventually stops decreasing and starts increasing. 
This is an undesirable effect.  

Because the model is quite complex, this paper considers several strategies to prevent or limit overfitting. The 
one used is known as regularization. Regularization is a pivotal method in machine learning that constrains or shrinks 
model coefficients, thereby preventing the model from fitting too closely to the training data and ensuring it 
generalizes well to unseen data. This paper adopts L2 regularization (Ridge) for its neural network model, given its 
effectiveness in reducing overfitting by penalizing large weights. 

As before, the data is split into the training and validation sets, the reason for which is described in the next section. 

Let  be the number of examples in the training set. Then,  where  is the binary cross entropy 

error. The parameters  and  are selected such that they minimize . Note that  is a hyperparameter. The 

model is trained several times with different values of , known as the regularization strength, and the model that gives 
the smallest error on the validation set is kept. 
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Observe that while minimizing  selects parameters that give good predictions on the training set, the addition of 
the second term in  penalizes large values of the parameters . Keeping the size of these parameters small 

smooths the model. Thus, regularization enables both keeping the predictions on the training set good while keeping 
the size of the parameters in check. 

Several different values of  are tried and the results are listed in Table 4. 
It is seen that  minimizes the error on the validation set. Thus, 

this value of  is selected to train the model, striking an effective balance 
between model complexity and predictive accuracy. This selection 
underscores the importance of regularization in enhancing the model's 
generalization capabilities. 

Through the strategic application of L2 regularization, this study 
reinforces the model's robustness against overfitting. The regularization 
approach, coupled with hyperparameter optimization, underscores a 
methodical framework for ensuring the predictive model is not only 

accurate on the training data but also performs reliably on unseen data, thus enhancing the model's applicability and 
reliability in predicting college enrollment. 
 
10. Validation set and evaluation 
 

The validation set is used to evaluate how good the model is. The validation set was not used in the development 
of the model, thus, the validation set gives an accurate prediction of how well the model will work on new examples, 
these are examples where the label is not known. The model is evaluated on the validation set for this reason. 

To assess the performance of the predictive model, a classification report was generated, providing a detailed 
analysis of the precision, recall, and F1-score for each class alongside overall accuracy. Because the dataset is balanced, 
as previously noted, simply measuring the overall accuracy is enough for determining the efficacy of the model; 
however, it is valuable to assess the other metrics. 

Precision measures the model's ability to correctly identify positive instances for each class, indicating the 
proportion of true positives against all positive predictions. The model demonstrated precision scores of 0.86 for 
students not enrolling in college (labeled as 'False') and 0.90 for those enrolling (labeled as 'True'), reflecting its higher 
precision in identifying students who are likely to enroll. 

Recall indicates the model's capability to identify all actual positive instances. Here, the model achieved recall 
scores of 0.89 for 'False' and 0.88 for 'True', showcasing a balanced sensitivity towards both potential enrollees and 
non-enrollees. 

The F1-score is the harmonic mean of precision and recall, providing a single score that balances both the false 
positives and false negatives. The F1-scores for 'False' and 'True' were 0.87 and 0.89, respectively, indicating a robust 
overall performance of the model with a slight edge in favor of correctly identifying true positives. 

The model's overall accuracy, which indicates the proportion of total correct predictions, was 0.88. This suggests 
that the model is expected to correctly predict the enrollment status of students 88% of the time. Furthermore, the 
macro average and weighted average scores for precision, recall, and F1-score were consistently 0.88. These averages 
corroborate the model's consistent performance across classes, considering both the balance and imbalance of the 
dataset. 

The presented metrics collectively affirm the predictive model's efficacy, demonstrating its capability to serve as 
a reliable tool in forecasting college enrollment. 
 
11. Discussion 
 

This study has potential limitations. Firstly, the dataset utilized, derived from a singular geographic region, may 
not fully encapsulate the diversity of factors influencing college enrollment globally, potentially limiting the 

J
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generalizability of the findings. Additionally, the model's reliance on synthetic data introduces disadvantages, as it 
may not accurately reflect real-world complexities or current trends. Furthermore, the complexity of the neural 
network model, although beneficial for capturing intricate patterns in the data, may obscure the interpretability of 
which specific features most significantly influence predictions, hindering the direct application of findings for policy 
or intervention strategies. Addressing these limitations in future research could enhance the robustness and 
applicability of predictive models in the educational domain. 

Nevertheless, this study's neural network model represents a significant advancement in predicting college 
enrollment, offering improved accuracy over traditional methods like logistic regression and decision trees. Logistic 
regression, popular for its simplicity and interpretability, often fails to capture complex variable interactions, limiting 
its predictive accuracy. Similarly, decision trees and their ensemble, random forests, although robust, are prone to 
overfitting when faced with high-dimensional data (Levy & O’Malley, 2020). The neural network model developed 
in this research not only addresses these limitations through advanced regularization techniques but also achieves a 
higher accuracy rate of 88%, compared to the 82.59-86.18% range reported by previous models and 56-79.22% for 
neural networks applied to comparable problems (Basu et al., 2019; Golden et al., 2021).  

The model's ability to process a broad set of features and model nonlinear relationships without explicit feature 
engineering stands out as its primary advantage. However, the potential for further improvements exists, particularly 
through the exploration of more diverse datasets and alternative neural network architectures, such as recurrent neural 
networks for sequential data analysis. 

The findings of this study underscore the potential of machine learning in transforming educational planning and 
policymaking. By accurately predicting college enrollment, this model equips educational institutions and 
policymakers with a powerful tool to identify students who may require additional support and resources to pursue 
higher education. Such predictive insights can lead to targeted interventions, thereby reducing educational disparities 
and promoting equal opportunities for all students. Moreover, this research highlights the critical role of data-driven 
approaches in understanding and addressing the multifaceted challenges facing the education sector today. It paves 
the way for future studies to explore more nuanced predictive factors and modeling techniques, further refining the 
accuracy and applicability of predictive models in educational settings. 

The promising results of this study pave the way for several future research directions that can further enhance 
the predictive accuracy and applicability of machine learning models in education. Firstly, expanding the dataset to 
include a wider geographic and demographic scope could help in understanding regional differences and the impact 
of diverse socioeconomic factors on college enrollment. Additionally, incorporating longitudinal data could offer 
insights into how changes over time in individual students' circumstances or broader educational policies affect 
enrollment decisions. Exploring the integration of more complex machine learning algorithms, such as deep learning 
and ensemble methods, might also improve model performance by capturing more nuanced patterns in the data. 
Another valuable direction would be the development of interpretable models that provide not just predictions but also 
insights into the relative importance of different factors influencing college enrollment. This could aid educators and 
policymakers in designing more effective interventions. Finally, conducting similar studies in different educational 
contexts, such as vocational training or graduate school enrollment, would broaden the understanding of educational 
trajectories and guide tailored support strategies across the spectrum of learning pathways. 
 
12. Conclusion 
 

In the pursuit of understanding and enhancing the trajectory of students towards higher education, this paper 
presented a comprehensive exploration of machine learning techniques to predict college enrollment. Employing a 
dataset comprising a thousand students' academic and socio-economic backgrounds, a predictive model was developed 
using neural networks, facilitated by Keras and TensorFlow, to forecast the likelihood of students' continuation into 
higher education. The model's methodology was rigorously designed to address potential overfitting through 
regularization techniques, ensuring its generalization capabilities across unseen data. The validation of the model 
revealed a commendable predictive accuracy greater than the existing predictive models in the field, substantiating 
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the model's utility in identifying students who might require additional guidance and support to pursue further 
education. 

The significance of this research extends beyond its technical achievements, embodying a crucial step towards 
the democratization of education. By pinpointing factors that influence college enrollment, the study not only aids 
educational institutions in tailoring their interventions but also assists policymakers in crafting policies that bridge the 
educational divide, ensuring that every student has the opportunity to realize their potential in higher education. 
Moreover, the study highlights the indispensable role of data-driven insights in navigating the complexities of 
educational outcomes, thus encouraging a more informed approach to educational planning and support mechanisms. 

The implications of this research present numerous pathways for future investigation. Expanding the dataset to 
encapsulate a broader demographic and geographic spectrum, integrating longitudinal studies to capture the dynamic 
nature of educational pathways, and exploring advanced machine learning architectures are steps that can enhance the 
model's predictive power and applicability. Furthermore, the development of interpretable models could better unravel 
the factors influencing college enrollment, providing actionable insights for targeted interventions. 
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