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Abstract 

Machine learning has many applications in the healthcare industry with the potential to save lives, one of which is 
detecting and diagnosing diseases based on images or predicting the likelihood of breast cancer given gene expression 
data. As a result, researchers have considered using machine learning techniques for faster diagnoses, which is critical 
for diseases like cancer when early detection can lead to a better prognosis. This study utilized the impact of supervised 
classification models, RNA-seq data from control patients and breast cancer patients. Gene expression read counts 
were subsequently normalized during the exploratory data analysis phase and split into training and testing data to 
create models that would help doctors draw conclusions about the presence of breast cancer. The study then introduced 
a separate validation set, to which the model could be used to predict a diagnosis. The paper explored various 
techniques to improve accuracy, such as reducing the number of significant genes used, altering the hyperparameters 
of each model, and normalizing data with a zero-inflated negative binomial distribution. The research yielded results 
with a maximum accuracy of 90.1% was obtained with both logistic regression models, and their performances were 
further analyzed using sklearn (Python machine learning tool) metrics. The models also discovered that patients with 
the gene markers ENSG00000201908, ENSG00000216184, and ENSG00000221326 exhibited the greatest variation 
in gene counts between breast cancer patients and control patients, which could be worth exploring in future studies. 
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1. Introduction 
 

Twelve percent of women in the United States will be diagnosed with breast cancer at some point in their lives 
(Waks & Winer, 2019). Though somewhat common, breast cancer remains difficult to predict and prevent. Early 
diagnosis is one of the best methods for a full recovery (Sun et al., 2017). However, for low-income countries, 
equipment and resources for detecting breast cancer are not readily available, which decreases the rate of survival. 
Using various models in machine learning, trends based on genetics and demographics can be used to create models 
that predict the likelihood that someone has breast cancer. Using models to predict breast cancer is not new; using 
mammogram images to predict breast cancer has yielded accuracies as high as 94.20% (Lin et al., 2022). If one could 
predict the occurrence of breast cancer based on quantitative gene counts even before the mammogram imaging that 
occurs at an older age, people could take more intentional actions in reducing future breast cancer risk. 

The data and demographics containing both breast cancer patients and control patients comes from a public dataset 
that was previously used for different purposes. The genes were sequenced and analyzed through a process known as 
RNA-seq, which allows us to measure RNA transcripts that are transcribed. The transcribed genes are broken into 
small cDNA segments, upon which adaptors are attached, further allowing us to duplicate these segments through a 
polymerase chain reaction (PCR) and analyze accordingly (Wang, Gerstein, & Snyder, 2009). When comparing 
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expression levels between breast cancer patients and normal patients, a significant difference in gene counts could 
often be found and used to create a model for prediction.  

The best prediction type of model that can be used to analyze this data is the supervised classification model, 
meaning the model has predetermined and labeled input values (specific genes and respective gene counts), and the 
output values are discrete variables (presence or absence of breast cancer). Three main classification models were 
used to find a relationship between genes and diagnosis: neural networks, logistic regression, and a random forest. 
Neural networks randomly select variables and add random weight values to calculate a predicted value, which is 
compared to the actual value to determine whether the prediction was accurate. If not, the model begins 
backpropagation, regenerating new weights for the variables and repeating the process for many epochs until the 
model converges. Logistic regression can be used with data with binary outcomes, converting continuous probabilities 
into a discrete 0 or 1. Random forests generate many decision trees and randomly selecting variables, maintaining 
trees that predict most accurately in the model. With many decision trees, the chance of having just one strong predictor 
is very high (Ren, Cheng, & Han, 2017). After determining the probability of a patient having breast cancer, a 
diagnosis can be made based on which outcome is more likely. These models will be employed to predict the 
probability of the presence of breast cancer based on gene expression data. 

 
2. Materials and Methods 

 
The data for this project was obtained through SILVER-seq (Small Input Liquid Volume Extracellular RNA 

Sequencing), which utilizes extracellular RNA found in human serum to compare expression levels of about 25% of 
the human genes (Zhou et al., 2019). The original training data consisted of 128 patients: 96 of the patients were breast 
cancer patients, while 32 of them were normal control patients. Using this dataset, various models created their 
parameters based on the gene counts for each patient. Molded from the training data, the new models were later 
compared to a validation set to determine how well each model predicts breast cancer diagnosis of a new set. For the 
validation data set, there were 161 total patients: 86 breast cancer patients and 75 normal control patients. Throughout 
this study, both training accuracies and validation accuracies were compared: the classification processes strive to find 
models for the gene count data that would correctly predict the breast cancer diagnoses from the training set to obtain 
a high training accuracy. However, generating a high validation accuracy is more important, as the previous model is 
then used on a new validation dataset to check the applicability of the model in a slightly different context. The 
challenge is generating a model with high training and validation accuracy, meaning the model cannot overfit the 
training data so heavily that it is useless and inaccurate in a slightly different context. 

 
2.1 Neural Network 

 
In order to effectively analyze high-dimensional data, the deSEQ-2 package, a program in the Python 

programming language that allows for easier processing of raw data like gene counts for use in a supervised model, 
was used to normalize and visually display the gene expression data. In the first iteration of the neural network, the 
dataset for breast cancer patients and normal patients were imported and transposed in order to ensure that each patient 
served as the sample with the characteristics of gene counts. Lots of data cleaning was required to remove the 
unnecessary data and add a diagnosis column so that the model can compare the model results to the actual diagnosis 
to determine the proportion of diagnoses that was correctly predicted. Gene count values were also converted from 
integer values to proportions, so that larger SILVER-seq samples won’t affect the dataset. Using the standard scaler 
normalization from the sklearn package, data was inputted into a sequential neural network model. This model 
contained 4 dense models with 16, 8, 4, and 2 neurons, with the final output layer having 1 neuron and a sigmoid 
activation. One hundred epochs of training were run, with gradual improvement in performance after each epoch (high 
val_acc and low val_loss). After fitting this model into a new test dataset, the model could now try to predict the 
validation set. 

In iteration two of the neural network, it was observed that some genes seemed to be extraneous, and the addition 
of these genes could add extra variables into the model that would only ruin its performance. As a result, genes were 
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filtered and only included genes with the most drastic count difference between normal patients and breast cancer 
patients (having a p-value less than 0.05 and suggesting a strong correlation between the gene and the occurrence of 
breast cancer), which narrowed the number of genes from 60675 to 2109. The neural network model’s accuracy 
improved by 14.9% with this change. 

 
2.2 Logistic Regression 

 
The process also involved experimenting with other model types, such as the logistic regression model. The data 

cleaning process was similar to that of the neural network, with a similar train-test split of 0.50, meaning half of the 
data values are split between the training and test data. The implementations of the actual models were as simple as 
importing the logistic regression function from the sklearn linear model class and fitting the initial model using the 
gene counts and diagnosis of the 64 training values. Comparing the model-predicted diagnoses of the test data and the 
actual diagnoses had an 100% accuracy, but a comparison to a different validation set was necessary to ensure that 
the model was not overfit and feasible in a slightly different context. The validation set’s predicted results were 
compared to its actual results, and the accuracy was slightly less than 100%. Therefore, the models were not a perfect 
fit, but the data was also not significantly overfit. 

 
2.3 Random Forest 

 
The random forest model had a similar initial setup, but the sklearn ensemble model class imported the random 

forest regressor model. The model had two hyperparameters that were controlled: n_estimators and random_state. In 
a random forest model, the n_estimators determine the number of trees that will be included in the random forest, with 
a greater number of trees typically correlated with a greater accuracy but slower model loading times. However, adding 
more trees also makes the model more prone to overfitting, leading to a lower accuracy when comparing the training 
data model to a different validation set. Choosing 20 trees seemed to maintain the highest accuracy without overfitting. 
The random_state keeps the end accuracy relatively consistent after every trial. 

 
2.4 Zero-inflated Negative Binomial Normalization 

 
In the third iteration, a new normalization technique is employed that could potentially increase accuracy. A new 

normalization method – zero-inflated negative binomial normalization – was used, in which the excess zeros are 
modeled independently of the rest of the data. This normalization is used often in scientific research in overdispersed 
data that contains lots of zeros, as the zeros increase the amount of variability, which distorts the standard deviation 
and prevents an accurate normalization from being created (Alam, Al Mahi, & Begum, 2018). This new normalization 
method created slightly different normalized values with varying results in its predictions using the neural network 
model, logistic regression model, and random forest model. 

 
3. Performance and Results 

 
The model prediction of the training set data for the neural network model tracked accuracy and validation 

accuracy most closely. The first neural network model iteration that contained 60675 different genes had the highest 
training accuracy of 95.31%, but the validation accuracy never reached higher than 78.12%, decreasing as the model 
ran, which is a sign of overfitting. Admittedly, final accuracy and validation accuracy for all neural networks had 
variation due to the nature of neural networks, especially the original model, as 60,675 variables are randomly assigned 
weights with a small sample size to which the models are trained and validated. Using the same model for the 
significant genes only showed both a higher training accuracy of 100%, but the validation accuracy also continued to 
increase, with a maximum test accuracy of 96.88%. This contrast can be viewed more clearly in figure 1. 
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1a

 

1b

 
Figure 1: Comparison of accuracy and validation accuracy increase in neural networks with 1a: 60,675 genes (top) to 
1b: 2,109 genes (bottom) 

 
The first iteration of the neural network contained too many different types of gene counts to yield an accurate 

neural network model, resulting in a test accuracy of 55.9% - just barely better than guessing. However, the effect of 
reducing the number of variables to include only the significant gene was massive, as the accuracy rate increases to 
70.8% for the neural network model with significant genes only.  

At this stage, the random forest and logistic regression models were also introduced, and accuracy rates were 
markedly higher than the neural network rate, correctly predicting the breast cancer diagnosis 82.0% and 90.1% of 
the time, respectively. 

Although higher accuracies for the zero-inflated negative binomial distribution were expected, accuracies actually 
seemed to remain relatively the same, if not worse. Using this normalization for both the training and validation sets, 
decreased the neural network model to an accuracy of 62.1%, slightly increased the random forest model’s test 
accuracy to 82.6%, and kept the logistic regression’s test accuracy at the same value of 90.1%. The various validation 
accuracies for each iteration are shown in table 1. 
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3.1 Confusion Matrix 
 
The accuracies of each model can be 

visually represented using a confusion 
matrix. Each prediction made by the model 
is split into four categories. The top-left 
box represents true-negative, meaning that 
the patient was correctly predicted to be a 
normal control patient, and the bottom-
right box represents true-positive, meaning 
that the patient was correctly predicted to 
be a breast cancer patient. The top-right 
box represents a false-positive result, in 
which the model predicts that the patient has breast cancer, but the actual diagnosis of the patient is normal. Finally, 
the bottom-left box represents false-negative, in which the model predicts that the patient is normal when the patient 
actually does have breast cancer (Scikit-learn Developers., n.d.). Figure 2 shows the accuracy of each prediction made 
by each model in a visual manner, with colors indicating the number of predictions that fell under each category. 
Accuracy can be determined from the matrix by summing the values in the top-left and bottom-right boxes and 
dividing that value by the sum of all four values. An ideal model should have the majority of samples in the top-left 

and bottom-right 
boxes. 

The confusion 
matrix in figure 2 is 
further labeled with 
colors that indicate 
the number of 
samples in each 
category, with 
yellow being the 
greatest and dark 
purple being the 
least. In a strong 
model like the one 
in figure 2g, a mix 
of yellow and dark 
purple indicates that 
the model correctly 
predicts the 
diagnosis most of 
the time and rarely 
makes mistakes. 
Looking at both the 
accuracy and the 
confusion matrix, 
one can see that the 
logistic regression 
models are the 
strongest, while the 
neural networks are 

Table 1: Final validation accuracies in seven models used. 
Model Accuracy Scores 

Iteration 1: Neural Network (60,675 genes) 55.9% 
Iteration 2a: Neural Network (2,109 genes) 70.8% 
Iteration 2b: Random Forest (2,109 genes) 82.0% 
Iteration 2c: Logistic Regression (2,109 genes) 90.1% 
Iteration 3a: Neural Network (Zero-inflated 
negative binomial normalization) 62.1% 

Iteration 3b: Random Forest (Zero-inflated 
negative binomial normalization) 

82.6% 

Iteration 3c: Logistic Regression (Zero-inflated 
negative binomial normalization) 90.1%  

 
2a 

 
2b 

 
2c 

 
2d  

 
2e 

 
2f 

 
2g 

Figure 2: Confusion matrices of each model, labeled with a 
legend and different colors to show effectiveness. 2a: 
Iteration 1: Neural Network (60,675 genes), 2b: Iteration 
2a: Neural Network (2,109 genes), 2c: Iteration 2b: Random 
Forest (2,109 genes), 2d: Iteration 2c: Logistic Regression 
(2,109 genes) 2e: Iteration 3a: Neural Network (Zero-
inflated negative binomial normalization), 2f: Iteration 3b: 
Random Forest (Zero-inflated negative binomial 
normalization), 2g: Iteration 3c: Logistic Regression (Zero-
inflated negative binomial normalization) 
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the weakest because there are lots of blue colors in the matrices, indicating that the matrix is about equally likely to 
predict correctly as incorrectly, resulting in a lower accuracy. 

The performance of each model can be further investigated by utilizing various classification metrics. 
 

3.2 Receiver Operating Characteristic Curve 
 
Exploration began with the ROC curve and the ROC_AUC score. The ROC curve, which stands for a receiver 

operating characteristic curve, plots the sensitivity of the model compared 1 - specificity on the x-axis (Mandrekar, 
2010). The sensitivity model represents how often the model correctly predicts an outcome correctly marked as 
positive or having a “cancer” diagnosis, compared to the total number of positive predictions, which would include 
normal patients who were predicted to have breast cancer. In contrast, the specificity model represents an outcome 
that is correctly marked as negative with a “normal” diagnosis, compared to the total number of negative predictions, 
which includes cases in which a patient with breast cancer is predicted to not have breast cancer.  

It’s often difficult to have a model with perfect sensitivity and specificity, so the model should typically prioritize 
one over the other. In this case, it’s better to take precautions and do tests on a patient without breast cancer versus 
neglecting a breast cancer patient by claiming that they do not have cancer. Having a false negative is not ideal, so a 
model with higher sensitivity, or recall, is preferred (Lalkhen & McCluskey, 2008). 

 

 
3a 

 
3b 

 
3c 

 
3d 

 
3e 

 
3f 

 
3g 

Figure 3: ROC curves with area under curve classifier for 
each of the 7 models. 3a: Iteration 1: Neural Network 
(60,675 genes), 3b: Iteration 2a: Neural Network (2,109 
genes), 3c: Iteration 2b: Random Forest (2,109 genes), 3d: 
Iteration 2c: Logistic Regression (2,109 genes) 3e: Iteration 
3a: Neural Network (Zero-inflated negative binomial 
normalization), 3f: Iteration 3b: Random Forest (Zero-
inflated negative binomial normalization), 3g: Iteration 3c: 
Logistic Regression (Zero-inflated negative binomial 
normalization) 

 
The ROC curves for the models in figure 3 were generated by comparing results from the actual diagnoses in the 

validation set and the predicted diagnoses in the validation set according to the corresponding model. The curves in 
these models are composed of two line segments with different slopes, beginning at (0.0, 0.0) and ending at (1.0, 1.0) 
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in all cases. Models, like the one seen in figure 3d, that start with a large slope are typically better-performing curves, 
whereas curves with a generally constant slope like 1 are poorer-performing curves. The ROC_ AUC score (located 
in the bottom left of each graph) also ranges from values between 0.5 and 1, with numbers closer to 1 also indicating 
better performance (Hoo, Candlish, & Teare, 2017). 
 
3.3 Recall and Precision 

 
The recall and precision are two other metrics that are worth noting. The recall is the same as sensitivity, 

measuring the number of breast cancer patients who were correctly predicted as having breast cancer, as some breast 
cancer patients were predicted to have a normal diagnosis, causing a type II error, as seen in equation 1. 

 
𝑇𝑃	/	(𝑇𝑃	 + 	𝐹𝑁)                eq. (1) 
where TP = true positives and FN = false negatives  

 
On the other hand, precision measures the number of breast cancer patients who were correctly predicted as 

having cancer as a percentage of the total number of patients who were given a positive diagnosis, causing a type I 
error, as seen in equation 2.  

 
𝑇𝑃	/	(𝑇𝑃	 + 	𝐹𝑃)                 eq. (2) 
where TP = true positives and FP = false positives 

 
As mentioned previously, a type II error would be more detrimental in this model, so the number of false negatives 

should be mitigated, so recall and sensitivity should ideally have a proportion closest to 1.  
Table 2 highlights the precision and recall 

values found after generating each model. As 
expected, model 1 performed poorly with the 
lowest precision and recall of 60.0% and 
43.3%. This model is extremely prone to 
predicting normal diagnoses in patients with 
breast cancer, which would be dangerous, since 
people would not receive the proper treatment. 
Iteration 2c had the highest precision and recall 
rate of 91.4% and 89.2%, respectively, 
meaning out of these seven models, logistic 
regression currently looks like the best model 
to predict breast cancer. It should be noted that 
iterations 2a and 3a, neural network models, 
have recall percentages that are significantly 
higher than the precision percentages: in 3a, the 
difference is 23.6%. Neural networks that 
prioritize recall over precision would be more 
likely to have false positives that lead to a 
higher cost of additional testing but more 
breast cancer screening that ensures that 
patients are healthy. 

The precision recall curve for each iteration in figure 4 visually represents the relationship between precision and 
recall and is a metric that is suitable for skewed breast cancer gene count data, in which the proportions are typically 
zero or very close to zero (Davis & Goadrich, 2006). The precision is labeled on the y-axis, and the recall is labeled 
on the x-axis, with the graph starting from the top-left part of the graph and ending at the bottom-right part of the 

Table 2: Precision and recall scores for each of the seven models. 
Model Precision Recall 

Iteration 1:  
Neural Network (60,675 genes) 60.0% 43.3% 

Iteration 2a:  
Neural Network (2,109 genes) 

69.1% 78.3% 

Iteration 2b:  
Random Forest (2,109 genes) 81.3% 84.3% 

Iteration 2c:  
Logistic Regression (2,109 genes) 91.4% 89.2% 

Iteration 3a:  
Neural Network (Zero-inflated 
negative binomial normalization) 

59.5% 83.1% 

Iteration 3b:  
Random Forest (Zero-inflated 
negative binomial normalization) 

84.8% 80.7% 

Iteration 3c:  
Logistic Regression (Zero-inflated 
negative binomial normalization) 

93.5% 86.7% 



Vol. 2023 (2) 318 – 327 
ISSN 2688-3651 [online] 

325 

graph. In an ideal situation, both the precision and recall should be high, so the precision-recall graph should have a 
horizontal line as high on the graph as possible. 

The classifiers in these graphs are found using average precision, which is the area under the curve (Kielwagen, 
Grosse, & Grau, 2014). A higher number correlates with a better model in terms of the precision and recall metric. 

 

 
4a 

 
4b 

 
4c 

 
4d 

 
4e 

  
4f 

 
4g 

Figure 4: Precision vs. recall graph with average precision 
classifier for each of 7 models. 4a: Iteration 1: Neural Network 
(60,675 genes), 4b: Iteration 2a: Neural Network (2,109 
genes), 4c: Iteration 2b: Random Forest (2,109 genes), 4d: 
Iteration 2c: Logistic Regression (2,109 genes) 4e: Iteration 
3a: Neural Network (Zero-inflated negative binomial 
normalization), 4f: Iteration 3b: Random Forest (Zero-inflated 
negative binomial normalization), 4g: Iteration 3c: Logistic 
Regression (Zero-inflated negative binomial normalization) 

 
As anticipated from previous metrics, the original neural network with 60,675 genes performed the worst, as the 

precision drops to 0.6 immediately, and the average precision is the lowest of the seven models at 0.55. Both logistic 
regression models performed well, as average precision was the highest at 0.87 and 0.88 in figures 4d and 4g, 
respectively. Average precision is correlated with accuracy, as the two metrics never deviated by more than 0.05 for 
each corresponding model, so this is an effective metric for this dataset. 

 
4. Discussion 

 
4.1 Limitations 

 
Although the models seem to have lower numbers, the zero-inflated negative binomial distribution did not 

effectively normalize the data because of the nature of the zeros. The use of this model typically assumes that both 
structural zeros (zeros that occur because of some restriction that forces a value to be null) and random zeros (zeros 
that occur randomly in the dataset without possible restrictions) are present in the model. All genes are present in each 
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patient, so all zeros that occur in the sample are random and not structural, making the use of this model questionable 
(Hawinkel et al., 2020). To further increase accuracy rate, it is necessary to try to find a better normalization technique 
that makes sense in the context of the data. A larger sample size should also be considered, as having only 128 samples 
limits the amount of data that can be used to more effectively train the model. A larger sample size would also mitigate 
the amount of standard deviation that made accuracies in each trial slightly different. 

 
4.2 Future Directions 

 
While many genes were considered in combination to generate the model, it is important to take note the gene 

counts with the greatest difference between breast cancer patients and normal patients: ENSG00000201098, 
ENSG00000216184, ENSG00000221326, all of which had the lowest p-value. ENSG00000201098 is also referred to 
as the RNY1 gene that plays a role in chromosomal DNA replication, which makes sense as cancer is often caused by 
mutations in the DNA (GeneCaRNA., 2023, May 22). Future investigation into these genes may discover additional 
links to breast cancer that could serve as the starting point for developing a drug that could combat it. 

 
5. Conclusion 

 
Artificial intelligence has made significant advancements in the healthcare industry in terms of diagnosing 

diseases like cancer and finding ideal drugs and solutions to remedy these diseases (Davenport & Kalakota, 2019). In 
addition to the neural networks, logistic regression, and random forest models that can be used, machine learning can 
continue to be optimized to convert data and numbers on a spreadsheet into actionable steps that can help machines 
make the most reasonable and unbiased diagnoses and treatments. Though hyperparameters and normalizations could 
be further optimized, the logistic regression models had the highest accuracies of 90.1% when determining breast 
cancer diagnoses from gene counts. Normalizing the logistic regression models with the standard scaler or using the 
zero-inflated negative binomial distribution had no significant effect on the performance, as verified by metrics such 
as precision, recall, and receiver operating characteristic curves.  
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