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Abstract

Chronic wounds are a significant burden on individuals and the healthcare system, affecting millions of people and
incurring high costs. Wound classification using machine learning (ML) techniques is a promising approach for faster
diagnosis and treatment initiation. However, lack of high quality data to train the ML models is a major challenge to
realize the potential of ML in wound care. In fact, data limitations are the biggest challenge in studies using medical
or forensic imaging today. This study includes data augmentation techniques that can be used to overcome the data
scarcity limitations and unlock the potential of deep learning based solutions. It also explores a range of data
augmentation techniques from geometric transformations of wound images to advanced Generative Adversarial
Networks (GANSs), to enrich and expand datasets. Using the Keras, Tensorflow, and Pandas libraries, data
augmentation techniques that can generate realistic wound images were implemented. The results show that geometric
data augmentation can improve classification performance, F1 scores, by up to 11% on top of state-of-the-art
models, across several key classes of wounds. The experiments with GAN based augmentation prove the viability
of using Decoder-Encoder Generative Adversarial Networks (DE-GANs) to generate wound images with richer
variations. The study and results show that data augmentation is a valuable privacy-preserving tool with huge
potential to overcome the data scarcity limitations and be part of any real-world ML-based wound care system.
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1. Introduction

Wounds, the modern day focus of extensive medical and forensic research, play an important role in quality of
life, causing an immense amount of complications, ranging from small to large-scale. A chronic wound is defined as
a wound that has been open for more than a month and that has not healed normally (Sen, 2021). Chronic wounds are
a significant burden on individuals and the healthcare system, affecting millions of people and incurring high costs.
Most common in elderly people, they affect around 8.2 million medicare beneficiaries in the United States, which
shows the astounding ubiquity of wounds (Sen, 2021).

Chronic wound classes include, but are not limited to, diabetic, pressure, surgical, and venous ulcers. Each of
these types of wounds are created by a multitude of factors, such as diabetes, surgery, and venous insufficiencies. More
than being painful and inconvenient, chronic wounds are a financial burden as well. Costs of individual patient care
alone for pressure ulcers is $20,900 minimum for each patient, with additional costs amounting to $43,180 per year
(Sen, 2021). Given the substantial impact a single wound can have on an individual’s quality of life, the cumulative
effect on the larger population diagnosed with chronic wounds is significant. Therefore, developing methods and
systems for efficient, effective and accurate wound care are of tremendous importance to society.

The length and complexity of the medical care process often lead to individuals avoiding medical consultation,
exacerbating their wound’s condition. Automated techniques based on deep learning algorithms can be used to classify
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wounds, allowing for quicker diagnosis and treatment initiation. They can assist doctors in saving time and focusing
on more critical steps of wound care. Machine Learning (ML)-based wound classification can improve the quality of
life in many people around the world.

Many studies have concluded that application of automated techniques in wound classification and care is
essential for the forensic and medical industry’s improvements (Chan et al., 2022; Dabas et al., 2023; Reifs et al.,
2023). There were also many studies that demonstrated basic wound classification with different ML models. Rostami
et. al (2021) used a Convolutional Neural Network (CNN) that classified between surgical, diabetic, and venous ulcers
with high accuracies. Similar research conducted by Sarp et al. (Sarp et al., 2021), used transfer learning and XAl
models that classified chronic wounds, similar to the research performed by Anisuzzaman et al. (2022). Chairat et al.
(2023) worked on increasing the accessibility of wound care by using transfer learning models such as U-Net with
EfficientNet and U-Net with MobileNetV2 (Sandler et al., 2019) to assess a wound and determine the rate of wound
healing and made wound care more accessible to the general public by training their models on images taken by an
iPhone at different locations, times of day, and brightness. Taking this one step further, subsequent studies went
beyond just classifying wounds and looked at wound analysis such as wound severity and healing rate (Anisuzzaman
et al., 2022; Hiisers et al., 2022; Gupta et al., 2023).

All these studies demonstrate the huge promise of deep learning models to transform wound care. However, data
scarcity is a huge limitation in practical use of such techniques in wound care. This is explicitly stated in the
conclusions of studies (Sarp et al., 2021; Rostami et al., 2021; Anisuzzaman et al., 2022), and in the discussions written
by studies (Anisuzzaman et al., 2022; Hiisers et al., 2022). For example, both (Anisuzzaman et al., 2022; Hiisers et
al., 2022) described in their future work that their model should be validated on a larger dataset. An efficient and
scalable way to solve this problem is essential for continued research and successful application of deep learning
techniques in the field of wound care. Data augmentation provides a scalable and privacy preserving technique to
overcome this data scarcity and this study provides practical solutions to it.

This study takes a pragmatic view point and evaluates data augmentation techniques that can be used to build
real-world deep learning based wound care systems. This study also demonstrates the viability of using GANs to
generate wound images with richer variations.

2. Materials and Methods

This section describes the three major phases in the experiments: transfer learning (Bozinovski, 2020) from
foundational CV models, geometric data augmentation, and GAN based data augmentation. Figure 1 visually shows
the key steps and the three phases. To begin, the composition of the dataset is described, as well as how the dataset is
split. This is followed by an outline of the training process, and detailed descriptions of the base model and data

augmentation techniques implemented.
Tmage Dataset

(Anisuzzaman, 2022), had a very imbalanced dataset —some

classes having as many as 2 times more images than others, as 'w“;he%nmj ’—
shown in Table 1. These classes included, background (BG), :

diabetic ulcers (D), not an ulcer (N), pressure ulcers (P), l l
surgical ulcers (S), and venous ulcers (V). Initially, the category

2.1 Dataset

The original dataset, obtained from another study

|

Dataset with ~85
images in class D

e (2]

B (3]
3
Learning Models ~
Base Model with Basic 5 Base Model with
Augmentation DE-GAN augmentation

Balanced Dataset with
randomly rotated and
zoomed images

MobileNetV2

with the most images was the venous ulcers class, and the not an Reanes0 \
ulcer class had the least amount of images. Selective sampling 1 %
was used to create a balanced dataset. This was accomplished by © ) /

randomly choosing about 75 images from each category. Each
one of these wound types have a very distinct appearance, as
shown in Figure 2. Train and test sets were created by splitting Figure 1. A flow chart representing the entire
the original dataset with an 80-20 split, respectively. methodology employed in the study
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Table 1. Original Dataset with Number of Data Points R = o
Wound Type Number of Images
Venous (class V) 185 images i o N
Background (BG) Diabetic Ulcer (D) Not an Ulcer (N)
Background (class BG) 75 images
Diabetic (class D) 139 images ) J r
. £y
Not an Ulcer (class N) 75 images > LA _ :
i -
Pressure (class P) 100 images Pressure Ulcer (P) Surgical Ulcer (S) Venous Ulcer (V)
Surgical (class S) 122 images Figure 2. Example of All Categories of Wounds Addressed in

this Study

Wound classification models using transfer learning

Over the years, a class of foundational computer vision models have emerged. These foundational models such
as ResNet50 (He et al., 2015), VGG16 (Simonyan and Zisserman, 2015), MobileNetV2 (Sandler et al., 2019), can be
adapted to domain specific tasks such as wound classification, by applying transfer learning. This study tests three of

these foundational models with a vast range of hyperparameters to select the one that is most accurate (see Figure 1).
Different combinations between 10, 30, and 50 epochs and learning rates of 0.01, 0.001, 0.0001, 0.05, and 0.0005 were
also used. Though these models have high accuracy and are highly adaptable to specific tasks, due to the small dataset
size, even the best models prove to have overfitting on the dataset.

Geometric Data Augmentation

An effective method to combat overfitting is data augmentation. In this study, geometric data augmentation was
implemented by using multiple python libraries. Tensorflow was used to implement transformations on the train
dataset that rotate images by a degree between 0 and 30, and change the brightness of an image to a value ranging
from 0 to 0.2 randomly. The balanced dataset underwent these transformations to yield a new dataset with the same
number of images, but with each image rotated or dimmed/brightened randomly. The most accurate model from phase
1 of experiments was then trained with this new, transformed dataset. These variations force the model to learn the
features of the dataset, which helps combat overfitting. Although geometric data augmentation is effective in
increasing the accuracy of the model to some extent, it is limited in variations it can produce. Generative modeling,
such as GAN, can be used to overcome this limitation to create new, varied images for the dataset.

Gaussian
Noise

Input @~ p(z) 20~ N(0,T)

GAN-based data augmentation
Generative Adversarial Networks (GAN) with Decoder- ot v, Pretraincd
Encoder Output Noise (DE-GAN) introduced by (Zhong et al.,
2020) were used with the built-in loss function. The DE-GAN
was trained on the training data set to create synthetic diabetic
ulcer images to expand the training dataset (see Figure 3 and
Equation 1). The new loss function shown in equation 1 used by
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Noise

the DE-GAN adds an additional component, Lhi " in addition to Decoder bzt

the loss function that all GANs use, L., . The DE-GANS use this
adv Output z ‘

Figure 3. 4 Flow Chart Representing the Parts of
L. . . a DE-GAN (Zhong et al., 2020)

variation and combat overfitting and confusion between classes, Note. The right diagram represents the structure of
and they have also been proven to create higher quality images the variational autoencoder in the DE-GAN, and the

in less time than the naive GAN. Many hyperparameter left diagram represents the structure of the naive
GAN component of the DE-GAN.

-]

i

loss function to gauge the quality of the image produced, and to
consequently improve it. The DE-GANs were used to introduce
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combinations were tested, from 3000-6000 epochs and many learning rates ranging from 0.0005 to 0.1. The images
generated by the DE-GANs were then used to inflate the original training dataset for class D by 14 images. This new
dataset was used to train the most accurate foundation model from the initial experiments.
Equation 1. The Combined Loss Function Used by the DE-GAN as Described in (Zhong et al., 2020
L= )\1 Ladv + }\2 Lhid

3. Results

The goals of the experiments are:
e  Show transfer learning can be applied to adapt foundation CV models to wound classification
e  Show that geometric data augmentation techniques improve accuracy
e Investigate the viability of DE-GAN techniques to successfully augment wound datasets and improve
accuracy.

The results from the experiments run using the two types of data augmentation are reported and analyzed. A set
of models were trained using the balanced dataset with 75 images per category and transfer learning from the base
models. Three different sizes (small, medium, large) of base models (MobileNetV2, ResNet50, and VGG16,
respectively) were chosen in order to provide for a good coverage of the sizes of models used. After experimenting

Table 2. Top Accuracies after Transfer Learning and Without Data with more than 15 different combinations of

Augmentation learning rates and number of epochs, a few top
Model Epochs Learning Rate Accuracy scores listed in table 2 emerged. The two models
MobileNetV2 30 0.0005 0.64 with top classification accuracies were VGG16
VGG16 30 0.001 0.82 .
; ResNet th t 829 49
ResNet50 37 0.0005 0.84 and ResNet50, with about 82% and 84%

accuracies, respectively.

3.1 Results with Data Augmentation

Although these models performed quite well with transfer learning on the original dataset with balancing, their
confusion matrices shown in Figure 4 show that they have very low accuracy for class D and class P. This demonstrates
one of the key limitations of applying transfer learning, which is that foundation models still need a good amount and
variety of data to adapt to a new domain such as wound classification. To address this core problem, data augmentation
was explored to combat overfitting and increase accuracy.

Geometric data augmentation provides significant improvement for classes D, P and V as shown in columns
Resnet50 with transfer learning and Geometric
augmentation in Table 3. Geometric augmentation - o o oo o o B = - o o o o o %
provides 10%, 11%, and 7% improvements in F1
scores for classes D, P, and V, respectively (see
Table 3) and these are precisely the classes that had
low F1 scores with just transfer learning. This shows

b

°

°

°
True label

°

°

°

°

the power of Geometric data augmentation to ' s
improve upon transfer learning on state-of-the art e
CV models. B PO P st

Due to the high computation (GPU)
requirements to train DE-GANs, one class was

Figure 4. Confusion Matrix of Top Two Models. Note. The right
image shows the confusion matrix of the base model VGG16 with
30 epochs and 0.0005 learning rate. The left image shows the
confusion matrix of the base model ResNet50 with 37 epochs and
0.0005 learning rate.

selected for experimentation to begin. DE-GAN
based augmentation for class D was implemented to
increase variation in the training dataset. Good
variation in the DE-GAN generated images was
observed, as shown in Figure 5 for class D. However, it was also observed that higher quality images did not directly
translate into higher F1 scores (see Figure 6 for confusion matrices). Increasing the number of DE-GAN based
augmented images and measuring the classification accuracy is an important future work for this model.
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Table 3. Precision, Recall and F1-scores for Foundation model (ResNet50) with Transfer Learning, Geometric Augmentation and
DE-GAN Augmentation

Wound Classes Scores ResN<13t50 Wlth xfer Geometric aug DE-GAN aug
earning

Precision 1.0 1.0 1.0
BG Recall 1.0 0.93 0.93
F1 1.0 0.97 0.97
Precision 0.69 0.83 0.71
D Recall 0.64 0.71 0.71
F1 0.67 0.77 0.71
Precision 1.0 0.94 1.0
N Recall 1.0 1.0 1.0
F1 1.0 0.91 1.0
Precision 0.56 0.67 0.63
P Recall 0.64 0.77 0.36
F1 0.60 0.71 0.45
Precision 0.85 0.85 0.67
S Recall 0.79 0.79 0.71
F1 0.81 0.81 0.69
Precision 0.8 0.82 0.67
Vv Recall 0.8 0.93 0.93
F1 0.8 0.87 0.78

True labe

Predicted label Predicted label

Figure 5. Sample Images Generated by DE-GAN Compared ~ Figure 6. Results with geometric augmentation and GAN

to the Original. Note. Left image: generated image of good Augmentation. Note. The leftmost image shows the confusion
quality. Right image: real wound image from original matrix of the training using geometric augmentation, and the
dataset. rightmost image shows the confusion matrix of the training

using the DE-GAN augmented dataset.

4. Discussion

In this section, a few key observations from the experiments are discussed. Experiments were conducted using
three foundational CV models, viz., MobileNetV2, VGG16, ResNet50. Hyper-parameter tuning of these models
showed interesting trends in model performance. When trained for 50 epochs, there was evidence of early stopping
during the transfer learning of all three foundation CV models, though these experiments provided the best results.
This led to stopping the training of the model past 50 epochs. All three models were least accurate with 0.01 and
0.05 learning rate, the reason being that the learning rates were much too high and therefore too aggressive to use to
train accurate models, as shown in Figure 7. On average, an increase in epochs also induced an increase in accuracy
for all three models.

For the smaller MobileNetV2 model, accuracy remained relatively low across different learning rates when the
number of epochs was a low number such as 10 (see Figure 7). Increasing the number of epochs to 30 showed a
general improvement in model accuracy, with the best accuracy observed being 0.64 for the learning rate 0.0005.

A few different variations of the DE-GAN based approach were experimented with. These variations include
using colored vs. black and white wound images, and colored images performed better. Adding more layers to the
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discriminator of the DE-GAN to increase the depth so that it can provide better signal to the generator was also
explored, but this did not lead to better quality images. Finally, the architecture explained in section 3 was converged
upon as the best model.
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Figure 7. Test Dataset Results with Different Hyperparameter Combinations

There were some challenges faced with model overfitting and DE-GAN structure. Overfitting was encountered
with even some of the best transfer learning models without the augmentation. DE-GANs were very sensitive to large
variations in the patterns in the input images and this affected the overall quality of generated images. This learning
and the large computational needs of DE-GAN training, led to focusing all the efforts on one class (Class D) at a
time. Another learning is that DE-GAN requires extensive tuning. Even after focusing on the Class D images, it took
extensive hyperparameter search to create realistic wound images. There could be two reasons for this. The first is
that the original dataset used to train the GANs had many different patterns (wound on toe versus wound on skin, etc.),
which could have inhibited the generator's learning of the dataset. Mode collapse was also very commonly observed
during training and led to generation of images that were all very similar to each other.

5. Conclusion

This study aimed at investigating data augmentation techniques that can be used for building real-world ML-
based wound care systems. To ground the study on a real-world setting, state-of-the-art CV foundation models were
used as a baseline. This study shows that foundational CV models such as MobileNetV2, ResNet50, and VGG16
can be successfully adapted for wound classification via transfer learning. Building on this, this study shows that
geometric data augmentation techniques can provide significant (up to 11%) improvement on key classes of wounds
(D, P and V). This study shows the viability of using DE-GAN based techniques to generate wound images with richer
variations as compared to applying only geometric augmentations. Further study is needed to quantify the
classification improvements of DE-GANS.
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The use of DE-GANS to generate a wider variety of wound images and quantifying the classification performance
is being actively explored. Another line of future work is experimentation with other types of GAN and training
methods, such as the Wasserstein GAN with gradient penalty (Gulrajani et al., 2017), which has more stability during
training and helps prevent mode collapse. Layering GAN-based augmentation on top of geometric augmentation is a
very promising avenue for higher classification performance, which is also being actively explored.
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