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Abstract 

Chronic wounds are a significant burden on individuals and the healthcare system, affecting millions of people and 
incurring high costs. Wound classification using machine learning (ML) techniques is a promising approach for faster 
diagnosis and treatment initiation. However, lack of high quality data to train the ML models is a major challenge to 
realize the potential of ML in wound care. In fact, data limitations are the biggest challenge in studies using medical 
or forensic imaging today. This study includes data augmentation techniques that can be used to overcome the data 
scarcity limitations and unlock the potential of deep learning based solutions. It also explores a range of data 
augmentation techniques from geometric transformations of wound images to advanced Generative Adversarial 
Networks (GANs), to enrich and expand datasets. Using the Keras, Tensorflow, and Pandas libraries, data 
augmentation techniques that can generate realistic wound images were implemented. The results show that geometric 
data augmentation can improve classification performance, F1 scores, by up to 11% on top of state-of-the-art 
models, across several key classes of wounds. The experiments with GAN based augmentation prove the viability 
of using Decoder-Encoder Generative Adversarial Networks (DE-GANs) to generate wound images with richer 
variations. The study and results show that data augmentation is a valuable privacy-preserving tool with huge 
potential to overcome the data scarcity limitations and be part of any real-world ML-based wound care system. 
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1. Introduction 
 

Wounds, the modern day focus of extensive medical and forensic research, play an important role in quality of 
life, causing an immense amount of complications, ranging from small to large-scale. A chronic wound is defined as 
a wound that has been open for more than a month and that has not healed normally (Sen, 2021). Chronic wounds are 
a significant burden on individuals and the healthcare system, affecting millions of people and incurring high costs. 
Most common in elderly people, they affect around 8.2 million medicare beneficiaries in the United States, which 
shows the astounding ubiquity of wounds (Sen, 2021). 

Chronic wound classes include, but are not limited to, diabetic, pressure, surgical, and venous ulcers. Each of 
these types of wounds are created by a multitude of factors, such as diabetes, surgery, and venous insufficiencies. More 
than being painful and inconvenient, chronic wounds are a financial burden as well. Costs of individual patient care 
alone for pressure ulcers is $20,900 minimum for each patient, with additional costs amounting to $43,180 per year 
(Sen, 2021). Given the substantial impact a single wound can have on an individual’s quality of life, the cumulative 
effect on the larger population diagnosed with chronic wounds is significant. Therefore, developing methods and 
systems for efficient, effective and accurate wound care are of tremendous importance to society. 

The length and complexity of the medical care process often lead to individuals avoiding medical consultation, 
exacerbating their wound’s condition. Automated techniques based on deep learning algorithms can be used to classify 
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wounds, allowing for quicker diagnosis and treatment initiation. They can assist doctors in saving time and focusing 
on more critical steps of wound care. Machine Learning (ML)-based wound classification can improve the quality of 
life in many people around the world. 

Many studies have concluded that application of automated techniques in wound classification and care is 
essential for the forensic and medical industry’s improvements (Chan et al., 2022; Dabas et al., 2023; Reifs et al., 
2023). There were also many studies that demonstrated basic wound classification with different ML models. Rostami 
et. al (2021) used a Convolutional Neural Network (CNN) that classified between surgical, diabetic, and venous ulcers 
with high accuracies. Similar research conducted by Sarp et al. (Sarp et al., 2021), used transfer learning and XAI 
models that classified chronic wounds, similar to the research performed by Anisuzzaman et al. (2022). Chairat et al. 
(2023) worked on increasing the accessibility of wound care by using transfer learning models such as U-Net with 
EfficientNet and U-Net with MobileNetV2 (Sandler et al., 2019) to assess a wound and determine the rate of wound 
healing and made wound care more accessible to the general public by training their models on images taken by an 
iPhone at different locations, times of day, and brightness. Taking this one step further, subsequent studies went 
beyond just classifying wounds and looked at wound analysis such as wound severity and healing rate (Anisuzzaman 
et al., 2022; Hüsers et al., 2022; Gupta et al., 2023). 

All these studies demonstrate the huge promise of deep learning models to transform wound care. However, data 
scarcity is a huge limitation in practical use of such techniques in wound care. This is explicitly stated in the 
conclusions of studies (Sarp et al., 2021; Rostami et al., 2021; Anisuzzaman et al., 2022), and in the discussions written 
by studies (Anisuzzaman et al., 2022; Hüsers et al., 2022). For example, both (Anisuzzaman et al., 2022; Hüsers et 
al., 2022) described in their future work that their model should be validated on a larger dataset. An efficient and 
scalable way to solve this problem is essential for continued research and successful application of deep learning 
techniques in the field of wound care. Data augmentation provides a scalable and privacy preserving technique to 
overcome this data scarcity and this study provides practical solutions to it. 

This study takes a pragmatic view point and evaluates data augmentation techniques that can be used to build 
real-world deep learning based wound care systems. This study also demonstrates the viability of using GANs to 
generate wound images with richer variations. 
 
2. Materials and Methods 
 

This section describes the three major phases in the experiments: transfer learning (Bozinovski, 2020) from 
foundational CV models, geometric data augmentation, and GAN based data augmentation. Figure 1 visually shows 
the key steps and the three phases. To begin, the composition of the dataset is described, as well as how the dataset is 
split. This is followed by an outline of the training process, and detailed descriptions of the base model and data 
augmentation techniques implemented. 
 
2.1 Dataset 
 

The original dataset, obtained from another study 
(Anisuzzaman, 2022), had a very imbalanced dataset –some 
classes having as many as 2 times more images than others, as 
shown in Table 1. These classes included, background (BG), 
diabetic ulcers (D), not an ulcer (N), pressure ulcers (P), 
surgical ulcers (S), and venous ulcers (V). Initially, the category 
with the most images was the venous ulcers class, and the not an 
ulcer class had the least amount of images. Selective sampling 
was used to create a balanced dataset. This was accomplished by 
randomly choosing about 75 images from each category. Each 
one of these wound types have a very distinct appearance, as 
shown in Figure 2. Train and test sets were created by splitting 
the original dataset with an 80-20 split, respectively. 

 
Figure 1. A flow chart representing the entire 
methodology employed in the study 
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Table 1. Original Dataset with Number of Data Points 

 

Wound Type Number of Images 

Venous (class V) 185 images 

Background (class BG) 75 images 

Diabetic (class D) 139 images 

Not an Ulcer (class N) 75 images 

Pressure (class P) 100 images 

Surgical (class S) 122 images Figure 2. Example of All Categories of Wounds Addressed in 
this Study 

 

 
Wound classification models using transfer learning 

Over the years, a class of foundational computer vision models have emerged. These foundational models such 
as ResNet50 (He et al., 2015), VGG16 (Simonyan and Zisserman, 2015), MobileNetV2 (Sandler et al., 2019), can be 
adapted to domain specific tasks such as wound classification, by applying transfer learning. This study tests three of 
these foundational models with a vast range of hyperparameters to select the one that is most accurate (see Figure 1). 
Different combinations between 10, 30, and 50 epochs and learning rates of 0.01, 0.001, 0.0001, 0.05, and 0.0005 were 
also used. Though these models have high accuracy and are highly adaptable to specific tasks, due to the small dataset 
size, even the best models prove to have overfitting on the dataset. 
 
Geometric Data Augmentation 

An effective method to combat overfitting is data augmentation. In this study, geometric data augmentation was 
implemented by using multiple python libraries. Tensorflow was used to implement transformations on the train 
dataset that rotate images by a degree between 0 and 30, and change the brightness of an image to a value ranging 
from 0 to 0.2 randomly. The balanced dataset underwent these transformations to yield a new dataset with the same 
number of images, but with each image rotated or dimmed/brightened randomly. The most accurate model from phase 
1 of experiments was then trained with this new, transformed dataset. These variations force the model to learn the 
features of the dataset, which helps combat overfitting. Although geometric data augmentation is effective in 
increasing the accuracy of the model to some extent, it is limited in variations it can produce. Generative modeling, 
such as GAN, can be used to overcome this limitation to create new, varied images for the dataset. 
 
GAN-based data augmentation 

Generative Adversarial Networks (GAN) with Decoder-
Encoder Output Noise (DE-GAN) introduced by (Zhong et al., 
2020) were used with the built-in loss function. The DE-GAN 
was trained on the training data set to create synthetic diabetic 
ulcer images to expand the training dataset (see Figure 3 and 
Equation 1). The new loss function shown in equation 1 used by 
the DE-GAN adds an additional component, 𝐿ℎ𝑖𝑑, in addition to 

the loss function that all GANs use, 𝐿𝑎𝑑𝑣 . The DE-GANs use this 

loss function to gauge the quality of the image produced, and to 
consequently improve it. The DE-GANs were used to introduce 
variation and combat overfitting and confusion between classes, 
and they have also been proven to create higher quality images 
in less time than the naive GAN. Many hyperparameter 

 
Figure 3. A Flow Chart Representing the Parts of 
a DE-GAN (Zhong et al., 2020)  
Note. The right diagram represents the structure of 
the variational autoencoder in the DE-GAN, and the 
left diagram represents the structure of the naive 
GAN component of the DE-GAN. 
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combinations were tested, from 3000-6000 epochs and many learning rates ranging from 0.0005 to 0.1. The images 
generated by the DE-GANs were then used to inflate the original training dataset for class D by 14 images. This new 
dataset was used to train the most accurate foundation model from the initial experiments. 

Equation 1. The Combined Loss Function Used by the DE-GAN as Described in (Zhong et al., 2020 

 
 
3. Results 
 

The goals of the experiments are: 
• Show transfer learning can be applied to adapt foundation CV models to wound classification 
• Show that geometric data augmentation techniques improve accuracy 
• Investigate the viability of DE-GAN techniques to successfully augment wound datasets and improve 

accuracy. 
The results from the experiments run using the two types of data augmentation are reported and analyzed. A set 

of models were trained using the balanced dataset with 75 images per category and transfer learning from the base 
models. Three different sizes (small, medium, large) of base models (MobileNetV2, ResNet50, and VGG16, 
respectively) were chosen in order to provide for a good coverage of the sizes of models used. After experimenting 

with more than 15 different combinations of 
learning rates and number of epochs, a few top 
scores listed in table 2 emerged. The two models 
with top classification accuracies were VGG16 
and ResNet50, with about 82% and 84% 
accuracies, respectively. 

 

3.1 Results with Data Augmentation 
 

Although these models performed quite well with transfer learning on the original dataset with balancing, their 
confusion matrices shown in Figure 4 show that they have very low accuracy for class D and class P. This demonstrates 
one of the key limitations of applying transfer learning, which is that foundation models still need a good amount and 
variety of data to adapt to a new domain such as wound classification. To address this core problem, data augmentation 
was explored to combat overfitting and increase accuracy. 

Geometric data augmentation provides significant improvement for classes D, P and V as shown in columns 
Resnet50 with transfer learning and Geometric 
augmentation in Table 3. Geometric augmentation 
provides 10%, 11%, and 7% improvements in F1 
scores for classes D, P, and V, respectively (see 
Table 3) and these are precisely the classes that had 
low F1 scores with just transfer learning. This shows 
the power of Geometric data augmentation to 
improve upon transfer learning on state-of-the art 
CV models. 

Due to the high computation (GPU) 
requirements to train DE-GANs, one class was 
selected for experimentation to begin. DE-GAN 
based augmentation for class D was implemented to 
increase variation in the training dataset. Good 
variation in the DE-GAN generated images was 
observed, as shown in Figure 5 for class D. However, it was also observed that higher quality images did not directly 
translate into higher F1 scores (see Figure 6 for confusion matrices). Increasing the number of DE-GAN based 
augmented images and measuring the classification accuracy is an important future work for this model. 

Table 2. Top Accuracies after Transfer Learning and Without Data 
Augmentation 

Model Epochs Learning Rate Accuracy 
MobileNetV2 30 0.0005 0.64 

VGG16 30 0.001 0.82 
ResNet50 37 0.0005 0.84 

 
Figure 4. Confusion Matrix of Top Two Models. Note. The right 
image shows the confusion matrix of the base model VGG16 with 
30 epochs and 0.0005 learning rate. The left image shows the 
confusion matrix of the base model ResNet50 with 37 epochs and 
0.0005 learning rate. 
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Table 3. Precision, Recall and F1-scores for Foundation model (ResNet50) with Transfer Learning, Geometric Augmentation and 
DE-GAN Augmentation 

Wound Classes Scores ResNet50 with xfer 
learning Geometric aug DE-GAN aug 

BG 
Precision 

Recall 
F1 

1.0 
1.0 
1.0 

1.0 
0.93 
0.97 

1.0 
0.93 
0.97 

D 
Precision 

Recall 
F1 

0.69 
0.64 
0.67 

0.83 
0.71 
0.77 

0.71 
0.71 
0.71 

N 
Precision 

Recall 
F1 

1.0 
1.0 
1.0 

0.94 
1.0 
0.91 

1.0 
1.0 
1.0 

P 
Precision 

Recall 
F1 

0.56 
0.64 
0.60 

0.67 
0.77 
0.71 

0.63 
0.36 
0.45 

S 
Precision 

Recall 
F1 

0.85 
0.79 
0.81 

0.85 
0.79 
0.81 

0.67 
0.71 
0.69 

V 
Precision 

Recall 
F1 

0.8 
0.8 
0.8 

0.82 
0.93 
0.87 

0.67 
0.93 
0.78 

 

 
 

Figure 5. Sample Images Generated by DE-GAN Compared 
to the Original. Note. Left image: generated image of good 
quality. Right image: real wound image from original 
dataset. 

Figure 6. Results with geometric augmentation and GAN 
Augmentation. Note. The leftmost image shows the confusion 
matrix of the training using geometric augmentation, and the 
rightmost image shows the confusion matrix of the training 
using the DE-GAN augmented dataset. 

 
4. Discussion 
 

In this section, a few key observations from the experiments are discussed. Experiments were conducted using 
three foundational CV models, viz., MobileNetV2, VGG16, ResNet50. Hyper-parameter tuning of these models 
showed interesting trends in model performance. When trained for 50 epochs, there was evidence of early stopping 
during the transfer learning of all three foundation CV models, though these experiments provided the best results. 
This led to stopping the training of the model past 50 epochs. All three models were least accurate with 0.01 and 
0.05 learning rate, the reason being that the learning rates were much too high and therefore too aggressive to use to 
train accurate models, as shown in Figure 7. On average, an increase in epochs also induced an increase in accuracy 
for all three models. 

For the smaller MobileNetV2 model, accuracy remained relatively low across different learning rates when the 
number of epochs was a low number such as 10 (see Figure 7). Increasing the number of epochs to 30 showed a 
general improvement in model accuracy, with the best accuracy observed being 0.64 for the learning rate 0.0005.  

A few different variations of the DE-GAN based approach were experimented with. These variations include 
using colored vs. black and white wound images, and colored images performed better. Adding more layers to the 
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discriminator of the DE-GAN to increase the depth so that it can provide better signal to the generator was also 
explored, but this did not lead to better quality images. Finally, the architecture explained in section 3 was converged 
upon as the best model. 

 

 
Figure 7. Test Dataset Results with Different Hyperparameter Combinations 

 

There were some challenges faced with model overfitting and DE-GAN structure. Overfitting was encountered 
with even some of the best transfer learning models without the augmentation. DE-GANs were very sensitive to large 
variations in the patterns in the input images and this affected the overall quality of generated images. This learning 
and the large computational needs of DE-GAN training, led to focusing all the efforts on one class (Class D) at a 
time. Another learning is that DE-GAN requires extensive tuning. Even after focusing on the Class D images, it took 
extensive hyperparameter search to create realistic wound images. There could be two reasons for this. The first is 
that the original dataset used to train the GANs had many different patterns (wound on toe versus wound on skin, etc.), 
which could have inhibited the generator's learning of the dataset. Mode collapse was also very commonly observed 
during training and led to generation of images that were all very similar to each other. 
 
5. Conclusion 
 

This study aimed at investigating data augmentation techniques that can be used for building real-world ML-
based wound care systems. To ground the study on a real-world setting, state-of-the-art CV foundation models were 
used as a baseline. This study shows that foundational CV models such as MobileNetV2, ResNet50, and VGG16 
can be successfully adapted for wound classification via transfer learning. Building on this, this study shows that 
geometric data augmentation techniques can provide significant (up to 11%) improvement on key classes of wounds 
(D, P and V). This study shows the viability of using DE-GAN based techniques to generate wound images with richer 
variations as compared to applying only geometric augmentations. Further study is needed to quantify the 
classification improvements of DE-GANs. 



Vol. 2025 (9) 767 – 774 
ISSN 2688-3651 [online] 

773 

The use of DE-GANs to generate a wider variety of wound images and quantifying the classification performance 
is being actively explored. Another line of future work is experimentation with other types of GAN and training 
methods, such as the Wasserstein GAN with gradient penalty (Gulrajani et al., 2017), which has more stability during 
training and helps prevent mode collapse. Layering GAN-based augmentation on top of geometric augmentation is a 
very promising avenue for higher classification performance, which is also being actively explored. 
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