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Abstract

Malaria remains a major public health concern in Africa, where environmental and socioeconomic conditions
influence its transmission. Continuously rising carbon dioxide (CO2) emissions pose a severe threat to the climate;
however, their role in modulating malaria dynamics through climate-related processes remains elusive. This study
investigated the relationship between CO: emissions and malaria cases across African nations by integrating
environmental and socioeconomic variables. Using machine learning methods, including random forest and gradient
boosting regression, the analysis captured complex, nonlinear interactions that traditional models missed. The findings
revealed a positive correlation between CO: emissions and malaria prevalence, particularly in tropical forest regions
where microclimate shifts enhanced mosquito survival. In contrast, this link was weaker in arid areas that were less
favorable to mosquito breeding. Socioeconomic factors, such as improved sanitation, consistently mitigate malaria
risk across all environments. Correlation analyses highlighted spatial heterogeneity in CO: effects, while model
interpretation tools revealed the relative importance of contributing factors. This study established a framework for
understanding how CO.-driven environmental changes and socioeconomic conditions influenced malaria transmission
in Africa, offering insights for developing targeted, climate-resilient interventions.

Keywords: Carbon dioxide emissions, Malaria transmission, Machine learning, Environmental factors,
Socioeconomic variables

1. Introduction

Malaria remains one of the most urgent public health challenges worldwide, particularly in sub-Saharan Africa,
where the majority of global cases and deaths occur (World Health Organization, n.d.). Over the past few decades,
despite significant progress through interventions such as insecticide-treated nets and antimalarial medications,
malaria prevention has plateaued in recent years (Pryce et al., 2022). One contributing factor is climate change, largely
driven by rising carbon dioxide (CO-) emissions (World Health Organization, 2021). Although precise mechanisms
that link climate change to malaria transmission remain unclear (Paaijmans et al., 2009), environmental changes are
known to create conditions in which vector-borne diseases can thrive (Beloconi et al., 2023). Vectors, such as
mosquitoes, transmit pathogens between humans or from animals to humans and are sensitive to environmental
changes (Caminade et al., 2019). While no definitive evidence directly links rising CO- emissions to increased malaria
incidence, numerous studies suggest a positive correlation between global warming and malaria transmission (Nabi
& Qader, 2009). This underscores the importance of further research into how climate-related factors may influence
malaria transmission. This study aims to investigate how CO. emissions contribute to the shifting patterns of malaria
transmission, thereby informing strategies to adapt disease control measures to a changing climate. Moreover,
understanding the role of emissions and climatic conditions such as high temperature and humidity in disease
dynamics is particularly important for regions with limited healthcare infrastructure and high malaria burden (Fatima
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et al., 2025). This research not only assesses the environmental drivers of malaria but also supports more effective,
region-specific public health policies.

A substantial body of past research has examined environmental influences on malaria vector behavior. Ermert
et al. (2011) linked greenhouse gas emissions, partially driven by deforestation, to the expansion of malaria zones into
higher-altitude regions once considered unsuitable for transmission. Similarly, Himeidan and Kweka (2012)
documented how deforestation and agricultural expansion in the East African highlands elevated local temperatures,
thereby enhancing the survival and reproductive success of Anopheles mosquitoes. Because deforestation both releases
stored CO- and reduces carbon sequestration, it contributes to local warming and global emissions. Furthermore, Le
et al. (2019) used the stochastic lattice-based integrated malaria (SLIM) model to show that elevated CO:
concentrations have modified vegetation cover in areas like Kilifi County, Kenya, thereby influencing mosquito
breeding and biting patterns. Additional insights come from Costantini et al. (1996), who demonstrated that higher
CO: levels enhance mosquitoes' ability to locate human hosts, and from Takken et al. (2024), who examined how
specific environmental stressors, including rising CO- levels, increased temperatures, and changes in humidity, affect
the feeding and mating behaviors of mosquitoes in sub-Saharan Africa. Collectively, these studies highlight how CO-
emissions—whether from fossil fuel combustion or indirectly through deforestation—drive environmental changes
that reshape mosquito ecology and influence malaria transmission dynamics by altering key aspects of the vector life
cycle, such as the duration of larval development and frequency of blood feeding(Institute of Medicine, 1991).

While climate and environmental variables are essential components of malaria ecology, it is equally important
to recognize that socioeconomic factors also impact disease transmission (Castro, 2017). In recent years, studies have
emphasized the importance of non-environmental variables such as gross domestic product (GDP), access to clean
water, sanitation capacity, urbanization, and healthcare infrastructure on malaria prevalence (Braimah et al., 2024). In
particular, regions with limited access to preventive tools, poor health systems, and low income are often more
vulnerable to malaria outbreaks (Perera et al., 2022). Rural areas with scarce water sources and limited housing
protection are more likely to experience high vector exposure (Sutherst, 2004). Ignoring these factors may lead to an
incomplete understanding of the malaria transmission patterns. For example, regions with similar environmental
profiles may experience vastly different transmission rates due to dissimilar public health capacity or economic
development (Institute of Medicine, 2002). Thus, it is critical to consider confounding variables when studying the
relationship between CO-. emissions and malaria, as they can amplify or obscure the impact of climate-related factors
(Nissan et al., 2021). To address this, the present study incorporates these socioeconomic factors to produce a more
comprehensive model for malaria transmission.

Given the complex interactions between environmental and socioeconomic factors, traditional statistical methods
may not be able to model malaria transmission dynamics (MalariaWorld, 2024). In response to these limitations,
machine learning (ML) has emerged as a powerful tool for modeling complicated systems and extracting patterns
from high-dimensional data (Surur et al., 2025). Unlike traditional methods, ML models can handle poorly defined
data distributions, making them well-suited for public health studies (Panch et al., 2018). ML has already shown
promise in forecasting disease outbreaks, optimizing intervention strategies, and identifying risk factors in diseases
such as dengue, Zika, and COVID-19 (Al-Hajjar, 2024). By integrating multiple datasets from multiple sources, ML
approaches can combine environmental factors such as temperature, rainfall, and other socioeconomic factors to better
understand how these elements interact and influence malaria transmission. Building on the proven utility of ML in
modeling health systems, this research applied ML techniques to investigate the relationship between carbon dioxide
emissions and malaria transmission in Africa.

2. Materials and Methods
2.1 Data Acquisition and Preprocessing

Datasets used were downloaded from Kaggle (Lydia70. n.d.). Priorities were given to datasets that met the
following criteria: (1) institutional provenance (e.g., sourced from the World Health Organization or World Bank), (2)
a sufficient number of countries to ensure statistical power. The chosen dataset includes major African countries and
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contains information on malaria incidence, total reported malaria cases, carbon dioxide emissions, sanitation,
economic indicators, and demographic growth rates from 2007 to 2017.

This study did not select more recent datasets for several reasons. In this context, “recency” indicates that the
dataset has an extensive temporal range and includes numerous significant variables, rather than being limited to the
most recent year. Moreover, none of the models used the time (2007-2017) as a variable; thus, not including more
recent data did not explicitly influence predictions or conclusions. More recent or comprehensive data from official
sources such as the World Health Organization or environmental databases could not be obtained, as the available
resources were generally restricted to a single year (e.g., 2024), limited by paywalls, or required formal requests for
data access. Conversely, the Kaggle dataset was distinctive in its accessibility and comprehensive inclusion of all
essential variables required for this analysis. It was considered the most optimal and representative source.

Variates with incomplete country-level data were removed; similarly, countries with missing values for variates
were removed. In total, eighteen out of fifty countries were removed. However, because the remaining countries have
a wide range of malaria incidence and total reported cases across the studied period, the exclusions of countries likely
did not impact the study’s conclusion. The filtered dataset contains complete coverage for 32 African countries,
including Namibia, Sao Tome and Principe, Sudan, Comoros, Mauritania, Madagascar, Senegal, Kenya, Ethiopia,
Zimbabwe, Guinea-Bissau, Tanzania, Zambia, Burundi, Angola, Rwanda, Gabon, Cameroon, Malawi, Ghana, Uganda,
Equatorial Guinea, Togo, Nigeria, Liberia, Mozambique, Guinea, Niger, Cote d’Ivoire, Benin, Sierra Leone, and
Burkina Faso, across 14 variables encompassing Population, GDP Per Capita (USD), GDP Per Capita PPP (USD),
Transportation (Mt), Total CO2 Emission including LUCF (Mt), Rural population growth (annual %), Urban
population (% of total population), Urban population growth (annual %), People using at least basic drinking water
services (% of population), People using at least basic drinking water services, rural (% of rural population), People
using at least basic drinking water services, urban (% of urban population), People using at least basic sanitation
services (% of population), People using at least basic sanitation services, rural (% of rural population), and People
using at least basic sanitation services, urban (% of urban population).

2.2 Data Analysis Environment

All analyses were conducted using Python 3.10. While statistical analyses utilized the Statsmodel library, data
processing and numerical computations were performed with NumPy (Harris et al., 2020), Pandas (The pandas
development team, 2020), and SciPy (Virtanen et al., 2020). Machine learning models were implemented using Scikit-
Learn, and visualizations were generated with Matplotlib (Hunter, 2007) and Seaborn (Waskom, 2021). For
interpreting the tree-based regressors, SHAP (SHapley Additive explanations) was employed to provide insight into
feature importance and model behavior (Lundberg & Lee, 2017). SHAP values quantify how much each feature
positively or negatively contributes to a model's prediction, helping identify which variables are most influential and
how they affect the outcome (DataCamp, 2022).

2.3 Data Exploratory Analysis

The analysis began by examining malaria incidence and case numbers from 2007 to 2017 across 32 African
countries, using a dataset obtained from Kaggle (Lydia70. n.d.). This dataset revealed wide variation across nations
and annual fluctuations. It then compared regional trends to explore how environmental factors may differently impact
transmission across geographic areas.

2.4 Correlation Analysis

To assess whether CO, the central variable in this study, could explain year-to-year variations in malaria
incidence, Pearson correlation coefficients were computed and visualized for each country. Additionally, correlations
were also calculated for environmental and socioeconomic factors.
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2.5 Train-Test Split

To fairly evaluate the performance of the machine learning models, the dataset was randomly divided into training
and testing subsets, with 50% of the data allocated for model training and the remaining 50% reserved for unbiased
evaluation. This ratio of train-test split was motivated by the fact that the dataset had only 352 data points, and enough
samples were needed to do a full and accurate evaluation of how well the classifier worked. This method helped keep
performance estimates from being too optimistic and helped get a better idea of how well the model worked on unseen
data.

2.6 Feature Selection

The feature selection process began with the 14 variables identified in Section 2.1, which provided a
comprehensive overview of demographic, environmental, and economic factors across 32 African countries. This
prompted forward-backward feature selection, also known as stepwise selection, to improve the model. To keep only
highly predictive variables, during each round of selection, this strategy added the most statistically significant
variables and removed all insignificant variables. The process checked for multicollinearity and removed variables
that are highly correlated to avoid unnecessary repetition. Thus, the routine developed a simplified malaria incidence
model with non-redundant, statistically significant variables.

2.7 Linear Regression Modeling

Statsmodels were used to do multivariate ordinary least squares (OLS) regression, which yields statistical
significance and independent variable coefficients (Seabold & Perktold, 2010). Many input variables were statistically
insignificant in the initial results. Therefore, the model was re-fitted using the reduced set of features identified through
the forward-backward selection process described in Section 2.6. The simplified model kept only four variables out
of fourteen but had comparable predictive accuracy, demonstrating that these features captured the most significant
information. Despite this improvement, the OLS model had a low test-set correlation, prompting more flexible
machine learning methods.

2.8 Tree-based Regression Modeling

To better capture the nonlinear relationships between CO: emissions, socioeconomic factors, and malaria
incidence, this study applied random forest regression (Ho, 1995) and gradient boosting regression (Friedman, 2001).
Both models were run with the Scikit-Learn default parameters, except for the max depth and random state.
Specifically, both models were configured with the number of trees equal to 100, maximum depth equal to 3, and
random state equal to 0. The shallow tree depth was meant to avoid overfitting, and setting the random state was to
ensure reproducibility. The input features were the same as the ones chosen via feature selection in section 2.6.
Gradient boosting achieved a Pearson correlation coefficient of 0.8 on the test set, indicating strong predictive
accuracy. To gain deeper insight into how each feature influenced the models’ predictions, SHAP analysis was
subsequently performed and visualized. SHAP values helped explain how much each feature contributes to a model’s
prediction, allowing for a clearer interpretation of variable importance and direction of influence (DataCamp, 2022)
Ultimately, this analysis confirmed the initial hypothesis by revealing that CO. emissions tend to increase malaria
transmission, whereas improved sanitation consistently reduces it.

3. Results

Malaria incidence trends remained relatively constant or gradually declined across most African countries
between 2007 and 2017, as shown in Figure 1A. However, countries like Rwanda experienced a dramatic surge in
incidence, from approximately 250 to nearly 600 cases per 1,000 population between 2014 and 2016, followed by a
slight decrease. In terms of incidence magnitude, Burkina Faso, Sierra Leone, Niger, and Cote d'Ivoire consistently
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reported some of the highest incidence rates, ranging between 400 and 550 cases per 1,000 population throughout the
recorded period. Nevertheless, modest declines could be seen toward the end of 2017. Meanwhile, countries like
Namibia, Sdo Tomé, Principe, and Comoros maintained low incidence rates (<50 cases per 1,000 population).

Figure 1C illustrates within-continent variation in malaria incidence, revealing a pronounced geographic contrast
between regions such as West, Central, and North Africa. The incidence rates ranged from virtually zero cases per
1,000 population in Morocco, Algeria, and Cabo Verde to over 500 cases in Burkina Faso. A clear regional difference
emerged between West and Central African nations and North African countries, with the former generally reporting
substantially higher malaria burden than the latter. Mid-range incidence rates (approximately 100-300 cases per 1,000
population) were observed throughout East African countries like Kenya, Ethiopia, Tanzania, and Zimbabwe. This
pattern linked malaria incidence to regional annual temperature profiles, which were partly driven by carbon emissions
and other environmental factors.

As depicted in Figure 1B, total reported malaria cases increased substantially from 2007 to 2017, even in countries
where incidence rates remained stable or declined. A striking increase began around 2012-2013, with Nigeria,
Mozambique, and Burkina Faso experiencing a particularly steep upward trend. Notably, Nigeria reported over 12
million malaria cases in 2016, representing a more than tenfold increase from 2007. This substantial growth in reported
cases, despite a relatively flat incidence trend, was likely due to improvements in case detection and reporting systems
rather than a true increase in malaria burden. Even though most countries experienced an increase in total reported
cases, Namibia, Sdo Tomé¢ and Principe, and Comoros maintained low absolute case numbers throughout the study
period.

This study used incidence rate to measure malaria burden because it normalized for population size and reflected
exposure to malaria vectors. This ensured trends represent transmission dynamics rather than demographics. Incidence
also offered a more accurate view of transmission intensity and is the primary metric recommended by the WHO in
its Global Technical Strategy 2016-2030 (World Health Organization, 2015). Accordingly, the modeling focused on
malaria incidence and its relationship with CO. emissions and other variables.
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Figure 1. Malaria incidence and total Cases across selected African countries in 2007-2017. Figure 1A shows temporal trends in
malaria incidence rates (per 1,000 population at risk), and Figure 1B illustrates total reported malaria cases across African countries
from 2007 to 2017. Figure 1C demonstrates the intra-country malaria incidence variation.

As shown in Figure 2A, correlation coefficients were computed between carbon dioxide emissions and malaria
incidence across African countries, revealing strong variation in both direction and strength of association. This
underscored the complex and diverse nature of malaria transmission, which likely depends on additional
environmental and socioeconomic variables. These correlations were then binned by magnitude: ones with an absolute
magnitude greater than 0.5 were classified as strong, those between 0.3 and 0.5 were moderate, and the rest were
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considered weak. Several countries, including Angola and Malawi, demonstrated a strong negative correlation,
whereas countries like Cameroon and Gabon exhibited a strong positive correlation. Conversely, Kenya and Rwanda
displayed negligible correlation. It should be noted that the weak correlation cannot simply be attributed to the
countries having a small range of incidence rates. A parabolic-shaped relationship could be seen for Liberia and
Rwanda, where both countries had a large incidence range. Because carbon emissions cannot foster and inhibit malaria
transmission simultaneously, one could only conclude that carbon emissions alone cannot fully capture variations of
malaria incidence. Malaria transmission dynamics likely resulted from a complex interplay between carbon emissions
and many other factors. This is further supported by the observation that geographically proximal countries, such as
Cameroon and Nigeria, showed opposing correlations between carbon emissions and malaria incidence.
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Figure 2. The association between environmental and socioeconomic factors and malaria incidence across African countries.
Figure 2A illustrates the country-specific relationships between total CO: emissions (including LUCF) and malaria incidence
across multiple African nations. Figure 2B presents a comprehensive correlation heatmap illustrating the relationships between
various socioeconomic and environmental factors with malaria incidence across numerous African countries.

A similar analysis was then conducted on other variables to investigate whether other variables can explain the
observed variations in malaria incidence. Figure 2B displays the Pearson correlation between malaria incidence and
other variables, such as GDP per capita and access to sanitation, highlighting similarly inconsistent patterns across
countries. The Pearson correlation coefficient, which ranges from -1 to 1, quantifies the strength and direction of a
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linear association between two variables. A value closer to 1 or -1 indicates a stronger positive or negative linear
relationship, respectively. These correlations reveal how closely malaria incidence aligns with a given factor across
countries. Not a single variable was consistently positively or negatively correlated with malaria incidence across all
analyzed African countries. In particular, gross domestic product (GDP) per capita displayed strong positive
correlations (R=0.7) in Sudan and Equatorial Guinea and negative correlations (R=-0.9) in Ethiopia and Céte d’Ivoire.
Variables like access to basic sanitation services and rural population percentage also displayed similar ranges of
Pearson correlations. The lack of consistency in the direction of correlation coefficients across all countries
demonstrated that these features also could not explain the variations in malaria incidence.

As shown in Figure 3A, a multivariate linear regression model (OLS) was constructed using all independent
variables to explore their combined effect on malaria incidence across African countries. Ordinary Least Squares
(OLS) is a linear method that minimizes the sum of squared differences between actual and predicted values. The
model had a moderate predictive power, indicated by a test set Pearson correlation of 0.42. Figure 3B demonstrates
the estimated regression coefficients and associated p-values from a Student’s t-test, indicating the statistical
significance of each variable’s relationship with malaria incidence. The p-value reports the probability that the
observed effect occurred by random chance. A low p-value (typically p<0.05) suggests that the relationship is
statistically significant and unlikely due to random variation. Computing the p-value between independent and
dependent variables helps identify which independent variables truly have a correlational relationship with malaria
transmission dynamics. Regression coefficients represent the estimated change in the dependent variable (malaria
incidence) for a one-unit change in the independent variable, assuming other variables are constant. While the
regression coefficients provide a direct understanding of whether the feature positively or negatively impacts the
malaria transmission, the p-values assess statistical significance and certainty of the estimated relationship between
the variables and incidence. Because only half of the variables were statistically significant (p<0.05) and only 2 out
of 14 independent variables had a p-value less than 0.001, interpreting the direction and magnitude of the regression
model inferred coefficients was not very meaningful. I hypothesized that this poor significance was caused by the
severe feature redundancy, such as GDP per capita and GDP per capita based on purchasing power parity (PPP).
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Figure 3. Linear regression fails to capture malaria transmission dynamics. Figure 3A shows the linear regressor only captured a
weak association between actual malaria incidence and predicted malaria incidence, with R=0.42 on the testing set. Figure 3B
demonstrates a comprehensive and general visualization of regression coefficients colored by statistical significance levels (p-
values). Figure 3C presents regression coefficients only for key predictors of malaria incidence, color-coded by their statistical
significance (p-values). Figure 3D demonstrates the 4 most important features that were selected through the feature selection
routine mentioned in the Materials and Methods section.
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Therefore, a forward-backward feature selection routine was implemented. For further analyses, this heuristic
recommended only 4 variables, which were people with basic sanitation services, total CO2 emission, rural population
growth, and GDP per capita PPP. As shown in Figure 3C, the reduced regression model had a slight decrease in
predictive accuracy (test set R dropped from 0.42 to 0.32), while Figure 3D confirms that all four selected variables
were statistically significant (p<0.05). The model suggested that access to sanitized resources inhibited the spread of
malaria, whereas carbon emissions, rural population, and GDP all promoted the spread of this disease. The bias term
was also important, with its value around 250, suggesting that many malaria incidence values were around 250 cases
out of 1,000 population. The bias term, also known as the intercept, is the baseline value predicted when all input
variables are set to zero. In this case, it reflected a baseline malaria incidence of around 250 per 1000 people. This
reflected an underlying level of malaria burden that persisted regardless of the values of CO: emissions, sanitation
access, rural population growth, or GDP. The intercept’s significant p-value indicated that this baseline was not due
to random variation—it had a consistent and meaningful presence in the model. This supported the observation that
malaria incidence in many countries clusters around this level and reinforced the idea that even in the absence of
strong external drivers, malaria transmission remains an endemic issue in much of Africa. This is further supported
by the fact that the predicted malaria incidence largely fell between 200 to 350, even though the actual incidence range
was 0 to 500.

Although OLS considered the remaining four independent variables significant, their weak predictive power
undermined the predicted relationship between malaria incidence and the features of interest. The previous observation
of the linear model's inability to predict a full range of malaria incidence suggested the oversimplicity of the model.
Therefore, two tree-based machine learning models were employed. Unlike OLS, tree-based methods are more
expressive because they can model nonlinear relationships between input and output variables. As illustrated in Figure
4A, the random forest regression model achieved a test-set correlation of 0.55 between predicted and actual malaria
incidence, demonstrating improved performance. Test-set correlation refers to the Pearson correlation between
predicted and actual values on unseen data, serving as a measure of the model’s predictive accuracy. Despite the
improved performance, it was obvious that the model was still limited because many incidence values were predicted
to be around 360 cases, yet their actual range was between 150 and 500. Therefore, I further implemented a gradient
boosting algorithm. Figure 4B shows that the gradient boosting model further improved predictive performance,
reaching a test-set correlation of 0.82, without cases of severe over-fitting.
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Figure 4. The outcomes of predictive modeling and the key insights derived from employing machine learning on malaria incidence
data. Figure 4A presents a comprehensive evaluation of three machine learning approaches for predicting malaria incidence, along
with their comparative performance visualization. Figure 4B shows actual malaria incidence vs. predicted malaria incidence value
reached in the training set (R=0.72) and the testing set (R=0.55) correlations. Figure 4C shows feature importance from Gradient
Boosting regressor for malaria incidence prediction.
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To interpret the model’s predictions, SHAP analysis was conducted, as illustrated by Figure 4C. This visualization
reveals how each feature contributed to individual malaria predictions, highlighting the impact of sanitation, carbon
dioxide emissions, GDP, and rural population growth. SHAP values come from game theory and help interpret
machine learning models by showing how much each feature contributes to a specific prediction. In this case, a
negative SHAP value means the feature helps lower predicted malaria incidence, while a positive value means it
increases it. One can see that basic sanitation services were mostly high with a negative SHAP value, suggesting that
higher percentages of people with basic sanitation services tend to inhibit the spread of malaria. Furthermore, the total
carbon dioxide emission was mostly high with a strong positive SHAP value, supporting the initial hypothesis that
increased emissions will lead to heightened malaria transmission. GDP and rural population growth rate had evenly
distributed SHAP values between positive and negative, indicating that the effects of these two variables on malaria
incidence were not one-sided and more likely to be country-specific.

4. Discussion

The study revealed complex trends in malaria incidence across Africa. While rates stayed stable or declined in
most countries, total reported cases rose sharply. Regional patterns varied—West Africa had the highest incidence,
North Africa the lowest, and East Africa was intermediate. Conflicting correlations with factors like CO2 or GDP
showed that no single variable consistently explained transmission. Tree-based models performed well, with gradient
boosting achieving a 0.82 Pearson correlation. SHAP analysis showed sanitation lowers malaria risk, while CO:
increases it. GDP and rural population growth showed mixed effects, highlighting malaria as a product of intertwined
environmental, demographic, and infrastructure factors.

This study built on prior research to deepen understanding of malaria transmission in Africa. It extended findings
from Ermert et al. (2011) and Le et al. (2019), showing that CO- emissions lack a consistent linear association with
malaria incidence. This ML model also identified sanitation access as a strong predictor, supporting Perera et al.'s
(2022) claims about infrastructure's role in disease control. In contrast to Braimah et al. (2024), I found GDP’s effect
on malaria to be inconsistent. Lastly, by using SHAP to interpret complex interactions, this study affirmed Surur et
al.’s (2025) view on ML’s value in public health research.

This study has several important limitations. First of all, the analysis relied on secondary datasets from Kaggle,
which were collected by other researchers rather than through a controlled, long-term study that is manually collected.
Thus, while these datasets provide general, broad coverage, they may lack standardized methodologies and criteria
across countries. This would potentially introduce biases, such as inconsistent malaria reporting practices in different
countries. Secondly, the original dataset contained a certain amount of missing values across variables, countries, and
time; the reduction in sample size and potential selection bias, including omitted countries that may have unique
environmental or socioeconomic profiles, could affect the generalizability of my findings. Last but not least, the
machine learning models were generated under the assumption that observed relationships between the independent
variables (i.e., CO2 emissions, GDP, sanitation, etc) and malaria incidence are stable over time. So the dynamic nature
and potential changes of climate and disease transmission across these African countries were not considered
significantly in this study.

The results had immediate policy relevance. They supported emissions-aware surveillance to detect emerging
microclimates and emphasized prioritizing sanitation investments in high-burden areas. They also highlighted how
ML tools (Panch et al., 2018) can optimize malaria intervention targeting. Addressing gaps identified by Pryce et al.
(2022), this study developed a framework combining ML and SHAP-based interpretation to assess how environmental
and socioeconomic factors—CO: emissions, sanitation, GDP, and rural population growth—influence malaria
incidence across Africa. The framework captured complex interactions and revealed region-specific drivers of
transmission. This marked a key advance in malaria control planning using explainable models.

Multiple analytical methods converged to support a positive correlation between CO: emissions and malaria
incidence. SHAP analysis showed positive SHAP values for CO., and linear regression indicated a statistically
significant positive coefficient. In contrast, GDP and rural population growth exhibited context-dependent effects
varying by region. Correlation analysis highlighted CO:’s inconsistent regional impact: in tropical forest nations like
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Gabon, emissions likely altered microclimates, boosting mosquito survival and showing strong positive correlations;
in arid countries like Niger, where environmental conditions already restrict mosquito populations, correlations were
weak or negative, regardless of CO: levels.

Sanitation access consistently emerged as a protective factor across all analytical techniques, being negatively
associated with malaria incidence, regardless of the country. Although these data-driven trends are clear, targeted field
experiments are needed to uncover the biological mechanisms—particularly how emission-induced vegetation
changes (Le et al., 2019) interact with vector life cycles. Future research will examine how CO: emissions influence
malaria via (1) field studies comparing mosquito populations and malaria cases in high vs. low emission areas, and
(2) lab experiments testing how elevated CO: affects mosquito breeding and survival. These experiments will validate
model findings and guide integrated control strategies.

5. Conclusion

Overall, the findings revealed that malaria transmission in Africa was shaped by complex environmental and
socioeconomic factors. CO: emissions are positively linked to incidence—especially in tropical regions like Cameroon
and Gabon—while access to sanitation consistently reduces risk. Gradient Boosting models (R = 0.82) outperformed
linear models by capturing non-linear patterns. Regional differences, particularly the higher burden in West/Central
Africa, underscored the need for country-specific strategies. Effective malaria control under climate change will
require integrated approaches combining emissions monitoring with improved sanitation. Further research should
explore how CO: impacts vector ecology.
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