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Abstract 

Malaria remains a major public health concern in Africa, where environmental and socioeconomic conditions 
influence its transmission. Continuously rising carbon dioxide (CO2) emissions pose a severe threat to the climate; 
however, their role in modulating malaria dynamics through climate-related processes remains elusive. This study 
investigated the relationship between CO₂ emissions and malaria cases across African nations by integrating 
environmental and socioeconomic variables. Using machine learning methods, including random forest and gradient 
boosting regression, the analysis captured complex, nonlinear interactions that traditional models missed. The findings 
revealed a positive correlation between CO₂ emissions and malaria prevalence, particularly in tropical forest regions 
where microclimate shifts enhanced mosquito survival. In contrast, this link was weaker in arid areas that were less 
favorable to mosquito breeding. Socioeconomic factors, such as improved sanitation, consistently mitigate malaria 
risk across all environments. Correlation analyses highlighted spatial heterogeneity in CO₂ effects, while model 
interpretation tools revealed the relative importance of contributing factors. This study established a framework for 
understanding how CO₂-driven environmental changes and socioeconomic conditions influenced malaria transmission 
in Africa, offering insights for developing targeted, climate-resilient interventions. 
 
Keywords: Carbon dioxide emissions, Malaria transmission, Machine learning, Environmental factors, 
Socioeconomic variables 
 
1. Introduction 
 

Malaria remains one of the most urgent public health challenges worldwide, particularly in sub-Saharan Africa, 
where the majority of global cases and deaths occur (World Health Organization, n.d.). Over the past few decades, 
despite significant progress through interventions such as insecticide-treated nets and antimalarial medications, 
malaria prevention has plateaued in recent years (Pryce et al., 2022). One contributing factor is climate change, largely 
driven by rising carbon dioxide (CO₂) emissions (World Health Organization, 2021). Although precise mechanisms 
that link climate change to malaria transmission remain unclear (Paaijmans et al., 2009), environmental changes are 
known to create conditions in which vector-borne diseases can thrive (Beloconi et al., 2023). Vectors, such as 
mosquitoes, transmit pathogens between humans or from animals to humans and are sensitive to environmental 
changes (Caminade et al., 2019). While no definitive evidence directly links rising CO₂ emissions to increased malaria 
incidence, numerous studies suggest a positive correlation between global warming and malaria transmission (Nabi 
& Qader, 2009). This underscores the importance of further research into how climate-related factors may influence 
malaria transmission. This study aims to investigate how CO₂ emissions contribute to the shifting patterns of malaria 
transmission, thereby informing strategies to adapt disease control measures to a changing climate. Moreover, 
understanding the role of emissions and climatic conditions such as high temperature and humidity in disease 
dynamics is particularly important for regions with limited healthcare infrastructure and high malaria burden (Fatima 
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et al., 2025). This research not only assesses the environmental drivers of malaria but also supports more effective, 
region-specific public health policies. 

A substantial body of past research has examined environmental influences on malaria vector behavior. Ermert 
et al. (2011) linked greenhouse gas emissions, partially driven by deforestation, to the expansion of malaria zones into 
higher-altitude regions once considered unsuitable for transmission. Similarly,  Himeidan and Kweka (2012) 
documented how deforestation and agricultural expansion in the East African highlands elevated local temperatures, 
thereby enhancing the survival and reproductive success of Anopheles mosquitoes. Because deforestation both releases 
stored CO₂ and reduces carbon sequestration, it contributes to local warming and global emissions. Furthermore, Le 
et al. (2019) used the stochastic lattice-based integrated malaria (SLIM) model to show that elevated CO₂ 
concentrations have modified vegetation cover in areas like Kilifi County, Kenya, thereby influencing mosquito 
breeding and biting patterns. Additional insights come from Costantini et al. (1996), who demonstrated that higher 
CO₂ levels enhance mosquitoes' ability to locate human hosts, and from Takken et al. (2024), who examined how 
specific environmental stressors, including rising CO₂ levels, increased temperatures, and changes in humidity, affect 
the feeding and mating behaviors of mosquitoes in sub-Saharan Africa. Collectively, these studies highlight how CO₂ 
emissions—whether from fossil fuel combustion or indirectly through deforestation—drive environmental changes 
that reshape mosquito ecology and influence malaria transmission dynamics by altering key aspects of the vector life 
cycle, such as the duration of larval development and frequency of blood feeding(Institute of Medicine, 1991). 

While climate and environmental variables are essential components of malaria ecology, it is equally important 
to recognize that socioeconomic factors also impact disease transmission (Castro, 2017). In recent years, studies have 
emphasized the importance of non-environmental variables such as gross domestic product (GDP), access to clean 
water, sanitation capacity, urbanization, and healthcare infrastructure on malaria prevalence (Braimah et al., 2024). In 
particular, regions with limited access to preventive tools, poor health systems, and low income are often more 
vulnerable to malaria outbreaks (Perera et al., 2022). Rural areas with scarce water sources and limited housing 
protection are more likely to experience high vector exposure (Sutherst, 2004). Ignoring these factors may lead to an 
incomplete understanding of the malaria transmission patterns. For example, regions with similar environmental 
profiles may experience vastly different transmission rates due to dissimilar public health capacity or economic 
development (Institute of Medicine, 2002). Thus, it is critical to consider confounding variables when studying the 
relationship between CO₂ emissions and malaria, as they can amplify or obscure the impact of climate-related factors 
(Nissan et al., 2021). To address this, the present study incorporates these socioeconomic factors to produce a more 
comprehensive model for malaria transmission. 

Given the complex interactions between environmental and socioeconomic factors, traditional statistical methods 
may not be able to model malaria transmission dynamics (MalariaWorld, 2024). In response to these limitations, 
machine learning (ML) has emerged as a powerful tool for modeling complicated systems and extracting patterns 
from high-dimensional data (Surur et al., 2025). Unlike traditional methods, ML models can handle poorly defined 
data distributions, making them well-suited for public health studies (Panch et al., 2018).  ML has already shown 
promise in forecasting disease outbreaks, optimizing intervention strategies, and identifying risk factors in diseases 
such as dengue, Zika, and COVID-19 (Al-Hajjar, 2024). By integrating multiple datasets from multiple sources, ML 
approaches can combine environmental factors such as temperature, rainfall, and other socioeconomic factors to better 
understand how these elements interact and influence malaria transmission. Building on the proven utility of ML in 
modeling health systems, this research applied ML techniques to investigate the relationship between carbon dioxide 
emissions and malaria transmission in Africa.  
 
2. Materials and Methods 
 
2.1 Data Acquisition and Preprocessing 
 

Datasets used were downloaded from Kaggle (Lydia70. n.d.). Priorities were given to datasets that met the 
following criteria: (1) institutional provenance (e.g., sourced from the World Health Organization or World Bank), (2) 
a sufficient number of countries to ensure statistical power. The chosen dataset includes major African countries and 
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contains information on malaria incidence, total reported malaria cases, carbon dioxide emissions, sanitation, 
economic indicators, and demographic growth rates from 2007 to 2017.  

This study did not select more recent datasets for several reasons. In this context, “recency” indicates that the 
dataset has an extensive temporal range and includes numerous significant variables, rather than being limited to the 
most recent year. Moreover, none of the models used the time (2007–2017) as a variable; thus, not including more 
recent data did not explicitly influence predictions or conclusions. More recent or comprehensive data from official 
sources such as the World Health Organization or environmental databases could not be obtained, as the available 
resources were generally restricted to a single year (e.g., 2024), limited by paywalls, or required formal requests for 
data access. Conversely, the Kaggle dataset was distinctive in its accessibility and comprehensive inclusion of all 
essential variables required for this analysis. It was considered the most optimal and representative source. 

Variates with incomplete country-level data were removed; similarly, countries with missing values for variates 
were removed. In total, eighteen out of fifty countries were removed. However, because the remaining countries have 
a wide range of malaria incidence and total reported cases across the studied period, the exclusions of countries likely 
did not impact the study’s conclusion. The filtered dataset contains complete coverage for 32 African countries, 
including Namibia, Sao Tome and Principe, Sudan, Comoros, Mauritania, Madagascar, Senegal, Kenya, Ethiopia, 
Zimbabwe, Guinea-Bissau, Tanzania, Zambia, Burundi, Angola, Rwanda, Gabon, Cameroon, Malawi, Ghana, Uganda, 
Equatorial Guinea, Togo, Nigeria, Liberia, Mozambique, Guinea, Niger, Cote d’Ivoire, Benin, Sierra Leone, and 
Burkina Faso, across 14 variables encompassing Population, GDP Per Capita (USD), GDP Per Capita PPP (USD), 
Transportation (Mt), Total CO2 Emission including LUCF (Mt), Rural population growth (annual %), Urban 
population (% of total population), Urban population growth (annual %), People using at least basic drinking water 
services (% of population), People using at least basic drinking water services, rural (% of rural population), People 
using at least basic drinking water services, urban (% of urban population), People using at least basic sanitation 
services (% of population), People using at least basic sanitation services, rural (% of rural population), and People 
using at least basic sanitation services, urban (% of urban population).  
 
2.2 Data Analysis Environment 
 

All analyses were conducted using Python 3.10. While statistical analyses utilized the Statsmodel library, data 
processing and numerical computations were performed with NumPy (Harris et al., 2020), Pandas (The pandas 
development team, 2020), and SciPy (Virtanen et al., 2020). Machine learning models were implemented using Scikit-
Learn, and visualizations were generated with Matplotlib (Hunter, 2007) and Seaborn (Waskom, 2021). For 
interpreting the tree-based regressors, SHAP (SHapley Additive explanations) was employed to provide insight into 
feature importance and model behavior (Lundberg & Lee, 2017).  SHAP values quantify how much each feature 
positively or negatively contributes to a model's prediction, helping identify which variables are most influential and 
how they affect the outcome (DataCamp, 2022).  
 
2.3 Data Exploratory Analysis 
 

The analysis began by examining malaria incidence and case numbers from 2007 to 2017 across 32 African 
countries, using a dataset obtained from Kaggle (Lydia70. n.d.). This dataset revealed wide variation across nations 
and annual fluctuations. It then compared regional trends to explore how environmental factors may differently impact 
transmission across geographic areas.  
 
2.4 Correlation Analysis 
 

To assess whether CO₂, the central variable in this study, could explain year-to-year variations in malaria 
incidence, Pearson correlation coefficients were computed and visualized for each country. Additionally, correlations 
were also calculated for environmental and socioeconomic factors. 
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2.5 Train-Test Split 
 

To fairly evaluate the performance of the machine learning models, the dataset was randomly divided into training 
and testing subsets, with 50% of the data allocated for model training and the remaining 50% reserved for unbiased 
evaluation. This ratio of train-test split was motivated by the fact that the dataset had only 352 data points, and enough 
samples were needed to do a full and accurate evaluation of how well the classifier worked. This method helped keep 
performance estimates from being too optimistic and helped get a better idea of how well the model worked on unseen 
data. 
 
2.6 Feature Selection 
 

The feature selection process began with the 14 variables identified in Section 2.1, which provided a 
comprehensive overview of demographic, environmental, and economic factors across 32 African countries. This 
prompted forward-backward feature selection, also known as stepwise selection, to improve the model. To keep only 
highly predictive variables, during each round of selection, this strategy added the most statistically significant 
variables and removed all insignificant variables. The process checked for multicollinearity and removed variables 
that are highly correlated to avoid unnecessary repetition. Thus, the routine developed a simplified malaria incidence 
model with non-redundant, statistically significant variables.  
 
2.7 Linear Regression Modeling 
 

Statsmodels were used to do multivariate ordinary least squares (OLS) regression, which yields statistical 
significance and independent variable coefficients (Seabold & Perktold, 2010). Many input variables were statistically 
insignificant in the initial results. Therefore, the model was re-fitted using the reduced set of features identified through 
the forward-backward selection process described in Section 2.6. The simplified model kept only four variables out 
of fourteen but had comparable predictive accuracy, demonstrating that these features captured the most significant 
information. Despite this improvement, the OLS model had a low test-set correlation, prompting more flexible 
machine learning methods. 
 
2.8 Tree-based Regression Modeling 
 

To better capture the nonlinear relationships between CO₂ emissions, socioeconomic factors, and malaria 
incidence, this study applied random forest regression (Ho, 1995) and gradient boosting regression (Friedman, 2001). 
Both models were run with the Scikit-Learn default parameters, except for the max depth and random state. 
Specifically, both models were configured with the number of trees equal to 100, maximum depth equal to 3, and 
random state equal to 0. The shallow tree depth was meant to avoid overfitting, and setting the random state was to 
ensure reproducibility. The input features were the same as the ones chosen via feature selection in section 2.6. 
Gradient boosting achieved a Pearson correlation coefficient of 0.8 on the test set, indicating strong predictive 
accuracy. To gain deeper insight into how each feature influenced the models’ predictions, SHAP analysis was 
subsequently performed and visualized. SHAP values helped explain how much each feature contributes to a model’s 
prediction, allowing for a clearer interpretation of variable importance and direction of influence (DataCamp, 2022). 
Ultimately, this analysis confirmed the initial hypothesis by revealing that CO₂ emissions tend to increase malaria 
transmission, whereas improved sanitation consistently reduces it. 
 
3. Results 
 

Malaria incidence trends remained relatively constant or gradually declined across most African countries 
between 2007 and 2017, as shown in Figure 1A. However, countries like Rwanda experienced a dramatic surge in 
incidence, from approximately 250 to nearly 600 cases per 1,000 population between 2014 and 2016, followed by a 
slight decrease. In terms of incidence magnitude, Burkina Faso, Sierra Leone, Niger, and Côte d'Ivoire consistently 



Vol. 2025 (10) 838 – 849 
ISSN 2688-3651 [online] 

842 

reported some of the highest incidence rates, ranging between 400 and 550 cases per 1,000 population throughout the 
recorded period. Nevertheless, modest declines could be seen toward the end of 2017. Meanwhile, countries like 
Namibia, São Tomé, Príncipe, and Comoros maintained low incidence rates (<50 cases per 1,000 population). 

Figure 1C illustrates within-continent variation in malaria incidence, revealing a pronounced geographic contrast 
between regions such as West, Central, and North Africa. The incidence rates ranged from virtually zero cases per 
1,000 population in Morocco, Algeria, and Cabo Verde to over 500 cases in Burkina Faso. A clear regional difference 
emerged between West and Central African nations and North African countries, with the former generally reporting 
substantially higher malaria burden than the latter. Mid-range incidence rates (approximately 100-300 cases per 1,000 
population) were observed throughout East African countries like Kenya, Ethiopia, Tanzania, and Zimbabwe. This 
pattern linked malaria incidence to regional annual temperature profiles, which were partly driven by carbon emissions 
and other environmental factors.  

As depicted in Figure 1B, total reported malaria cases increased substantially from 2007 to 2017, even in countries 
where incidence rates remained stable or declined. A striking increase began around 2012-2013, with Nigeria, 
Mozambique, and Burkina Faso experiencing a particularly steep upward trend. Notably, Nigeria reported over 12 
million malaria cases in 2016, representing a more than tenfold increase from 2007. This substantial growth in reported 
cases, despite a relatively flat incidence trend, was likely due to improvements in case detection and reporting systems 
rather than a true increase in malaria burden. Even though most countries experienced an increase in total reported 
cases, Namibia, São Tomé and Príncipe, and Comoros maintained low absolute case numbers throughout the study 
period. 

This study used incidence rate to measure malaria burden because it normalized for population size and reflected 
exposure to malaria vectors. This ensured trends represent transmission dynamics rather than demographics. Incidence 
also offered a more accurate view of transmission intensity and is the primary metric recommended by the WHO in 
its Global Technical Strategy 2016–2030 (World Health Organization, 2015). Accordingly, the modeling focused on 
malaria incidence and its relationship with CO₂ emissions and other variables. 

 

   
Figure 1. Malaria incidence and total Cases across selected African countries in 2007-2017. Figure 1A shows temporal trends in 
malaria incidence rates (per 1,000 population at risk), and Figure 1B illustrates total reported malaria cases across African countries 
from 2007 to 2017. Figure 1C demonstrates the intra-country malaria incidence variation.  

 

As shown in Figure 2A, correlation coefficients were computed between carbon dioxide emissions and malaria 
incidence across African countries, revealing strong variation in both direction and strength of association. This 
underscored the complex and diverse nature of malaria transmission, which likely depends on additional 
environmental and socioeconomic variables.  These correlations were then binned by magnitude: ones with an absolute 
magnitude greater than 0.5 were classified as strong, those between 0.3 and 0.5 were moderate, and the rest were 
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considered weak. Several countries, including Angola and Malawi, demonstrated a strong negative correlation, 
whereas countries like Cameroon and Gabon exhibited a strong positive correlation. Conversely, Kenya and Rwanda 
displayed negligible correlation. It should be noted that the weak correlation cannot simply be attributed to the 
countries having a small range of incidence rates. A parabolic-shaped relationship could be seen for Liberia and 
Rwanda, where both countries had a large incidence range. Because carbon emissions cannot foster and inhibit malaria 
transmission simultaneously, one could only conclude that carbon emissions alone cannot fully capture variations of 
malaria incidence. Malaria transmission dynamics likely resulted from a complex interplay between carbon emissions 
and many other factors. This is further supported by the observation that geographically proximal countries, such as 
Cameroon and Nigeria, showed opposing correlations between carbon emissions and malaria incidence. 
 

 

 

Figure 2. The association between environmental and socioeconomic factors and malaria incidence across African countries. 
Figure 2A illustrates the country-specific relationships between total CO₂ emissions (including LUCF) and malaria incidence 
across multiple African nations. Figure 2B presents a comprehensive correlation heatmap illustrating the relationships between 
various socioeconomic and environmental factors with malaria incidence across numerous African countries.  

 

A similar analysis was then conducted on other variables to investigate whether other variables can explain the 
observed variations in malaria incidence. Figure 2B displays the Pearson correlation between malaria incidence and 
other variables, such as GDP per capita and access to sanitation, highlighting similarly inconsistent patterns across 
countries. The Pearson correlation coefficient, which ranges from -1 to 1, quantifies the strength and direction of a 
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linear association between two variables. A value closer to 1 or -1 indicates a stronger positive or negative linear 
relationship, respectively. These correlations reveal how closely malaria incidence aligns with a given factor across 
countries. Not a single variable was consistently positively or negatively correlated with malaria incidence across all 
analyzed African countries. In particular, gross domestic product (GDP) per capita displayed strong positive 
correlations (R=0.7) in Sudan and Equatorial Guinea and negative correlations (R=-0.9) in Ethiopia and Côte d’Ivoire. 
Variables like access to basic sanitation services and rural population percentage also displayed similar ranges of 
Pearson correlations. The lack of consistency in the direction of correlation coefficients across all countries 
demonstrated that these features also could not explain the variations in malaria incidence.  

As shown in Figure 3A, a multivariate linear regression model (OLS) was constructed using all independent 
variables to explore their combined effect on malaria incidence across African countries. Ordinary Least Squares 
(OLS) is a linear method that minimizes the sum of squared differences between actual and predicted values. The 
model had a moderate predictive power, indicated by a test set Pearson correlation of 0.42. Figure 3B demonstrates 
the estimated regression coefficients and associated p-values from a Student’s t-test, indicating the statistical 
significance of each variable’s relationship with malaria incidence. The p-value reports the probability that the 
observed effect occurred by random chance. A low p-value (typically p≤0.05) suggests that the relationship is 
statistically significant and unlikely due to random variation. Computing the p-value between independent and 
dependent variables helps identify which independent variables truly have a correlational relationship with malaria 
transmission dynamics. Regression coefficients represent the estimated change in the dependent variable (malaria 
incidence) for a one-unit change in the independent variable, assuming other variables are constant. While the 
regression coefficients provide a direct understanding of whether the feature positively or negatively impacts the 
malaria transmission, the p-values assess statistical significance and certainty of the estimated relationship between 
the variables and incidence. Because only half of the variables were statistically significant (p≤0.05) and only 2 out 
of 14 independent variables had a p-value less than 0.001, interpreting the direction and magnitude of the regression 
model inferred coefficients was not very meaningful. I hypothesized that this poor significance was caused by the 
severe feature redundancy, such as GDP per capita and GDP per capita based on purchasing power parity (PPP).  

 
Figure 3. Linear regression fails to capture malaria transmission dynamics. Figure 3A shows the linear regressor only captured a 
weak association between actual malaria incidence and predicted malaria incidence, with R=0.42 on the testing set. Figure 3B 
demonstrates a comprehensive and general visualization of regression coefficients colored by statistical significance levels (p-
values). Figure 3C presents regression coefficients only for key predictors of malaria incidence, color-coded by their statistical 
significance (p-values). Figure 3D demonstrates the 4 most important features that were selected through the feature selection 
routine mentioned in the Materials and Methods section.  
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Therefore, a forward-backward feature selection routine was implemented. For further analyses, this heuristic 
recommended only 4 variables, which were people with basic sanitation services, total CO2 emission, rural population 
growth, and GDP per capita PPP. As shown in Figure 3C, the reduced regression model had a slight decrease in 
predictive accuracy (test set R dropped from 0.42 to 0.32), while Figure 3D confirms that all four selected variables 
were statistically significant (p≤0.05). The model suggested that access to sanitized resources inhibited the spread of 
malaria, whereas carbon emissions, rural population, and GDP all promoted the spread of this disease. The bias term 
was also important, with its value around 250, suggesting that many malaria incidence values were around 250 cases 
out of 1,000 population. The bias term, also known as the intercept, is the baseline value predicted when all input 
variables are set to zero. In this case, it reflected a baseline malaria incidence of around 250 per 1000 people. This 
reflected an underlying level of malaria burden that persisted regardless of the values of CO₂ emissions, sanitation 
access, rural population growth, or GDP. The intercept’s significant p-value indicated that this baseline was not due 
to random variation—it had a consistent and meaningful presence in the model. This supported the observation that 
malaria incidence in many countries clusters around this level and reinforced the idea that even in the absence of 
strong external drivers, malaria transmission remains an endemic issue in much of Africa. This is further supported 
by the fact that the predicted malaria incidence largely fell between 200 to 350, even though the actual incidence range 
was 0 to 500. 

Although OLS considered the remaining four independent variables significant, their weak predictive power 
undermined the predicted relationship between malaria incidence and the features of interest. The previous observation 
of the linear model's inability to predict a full range of malaria incidence suggested the oversimplicity of the model. 
Therefore, two tree-based machine learning models were employed. Unlike OLS, tree-based methods are more 
expressive because they can model nonlinear relationships between input and output variables. As illustrated in Figure 
4A, the random forest regression model achieved a test-set correlation of 0.55 between predicted and actual malaria 
incidence, demonstrating improved performance. Test-set correlation refers to the Pearson correlation between 
predicted and actual values on unseen data, serving as a measure of the model’s predictive accuracy. Despite the 
improved performance, it was obvious that the model was still limited because many incidence values were predicted 
to be around 360 cases, yet their actual range was between 150 and 500. Therefore, I further implemented a gradient 
boosting algorithm. Figure 4B shows that the gradient boosting model further improved predictive performance, 
reaching a test-set correlation of 0.82, without cases of severe over-fitting. 

 
Figure 4. The outcomes of predictive modeling and the key insights derived from employing machine learning on malaria incidence 
data. Figure 4A presents a comprehensive evaluation of three machine learning approaches for predicting malaria incidence, along 
with their comparative performance visualization. Figure 4B shows actual malaria incidence vs. predicted malaria incidence value 
reached in the training set (R=0.72) and the testing set (R=0.55) correlations. Figure 4C shows feature importance from Gradient 
Boosting regressor for malaria incidence prediction.  
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To interpret the model’s predictions, SHAP analysis was conducted, as illustrated by Figure 4C. This visualization 
reveals how each feature contributed to individual malaria predictions, highlighting the impact of sanitation, carbon 
dioxide emissions, GDP, and rural population growth. SHAP values come from game theory and help interpret 
machine learning models by showing how much each feature contributes to a specific prediction. In this case, a 
negative SHAP value means the feature helps lower predicted malaria incidence, while a positive value means it 
increases it.  One can see that basic sanitation services were mostly high with a negative SHAP value, suggesting that 
higher percentages of people with basic sanitation services tend to inhibit the spread of malaria. Furthermore, the total 
carbon dioxide emission was mostly high with a strong positive SHAP value, supporting the initial hypothesis that 
increased emissions will lead to heightened malaria transmission. GDP and rural population growth rate had evenly 
distributed SHAP values between positive and negative, indicating that the effects of these two variables on malaria 
incidence were not one-sided and more likely to be country-specific. 
 
4. Discussion 
 

The study revealed complex trends in malaria incidence across Africa. While rates stayed stable or declined in 
most countries, total reported cases rose sharply. Regional patterns varied—West Africa had the highest incidence, 
North Africa the lowest, and East Africa was intermediate. Conflicting correlations with factors like CO₂ or GDP 
showed that no single variable consistently explained transmission. Tree-based models performed well, with gradient 
boosting achieving a 0.82 Pearson correlation. SHAP analysis showed sanitation lowers malaria risk, while CO₂ 
increases it. GDP and rural population growth showed mixed effects, highlighting malaria as a product of intertwined 
environmental, demographic, and infrastructure factors. 

This study built on prior research to deepen understanding of malaria transmission in Africa. It extended findings 
from Ermert et al. (2011) and Le et al. (2019), showing that CO₂ emissions lack a consistent linear association with 
malaria incidence. This ML model also identified sanitation access as a strong predictor, supporting Perera et al.'s 
(2022) claims about infrastructure's role in disease control. In contrast to Braimah et al. (2024), I found GDP’s effect 
on malaria to be inconsistent. Lastly, by using SHAP to interpret complex interactions, this study affirmed Surur et 
al.’s (2025) view on ML’s value in public health research. 

This study has several important limitations. First of all, the analysis relied on secondary datasets from Kaggle, 
which were collected by other researchers rather than through a controlled, long-term study that is manually collected. 
Thus, while these datasets provide general, broad coverage, they may lack standardized methodologies and criteria 
across countries. This would potentially introduce biases, such as inconsistent malaria reporting practices in different 
countries. Secondly, the original dataset contained a certain amount of missing values across variables, countries, and 
time; the reduction in sample size and potential selection bias, including omitted countries that may have unique 
environmental or socioeconomic profiles, could affect the generalizability of my findings. Last but not least, the 
machine learning models were generated under the assumption that observed relationships between the independent 
variables (i.e., CO₂ emissions, GDP, sanitation, etc) and malaria incidence are stable over time. So the dynamic nature 
and potential changes of climate and disease transmission across these African countries were not considered 
significantly in this study.  

The results had immediate policy relevance. They supported emissions-aware surveillance to detect emerging 
microclimates and emphasized prioritizing sanitation investments in high-burden areas. They also highlighted how 
ML tools (Panch et al., 2018) can optimize malaria intervention targeting. Addressing gaps identified by Pryce et al. 
(2022), this study developed a framework combining ML and SHAP-based interpretation to assess how environmental 
and socioeconomic factors—CO₂ emissions, sanitation, GDP, and rural population growth—influence malaria 
incidence across Africa. The framework captured complex interactions and revealed region-specific drivers of 
transmission. This marked a key advance in malaria control planning using explainable models. 

Multiple analytical methods converged to support a positive correlation between CO₂ emissions and malaria 
incidence. SHAP analysis showed positive SHAP values for CO₂, and linear regression indicated a statistically 
significant positive coefficient. In contrast, GDP and rural population growth exhibited context-dependent effects 
varying by region. Correlation analysis highlighted CO₂’s inconsistent regional impact: in tropical forest nations like 
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Gabon, emissions likely altered microclimates, boosting mosquito survival and showing strong positive correlations; 
in arid countries like Niger, where environmental conditions already restrict mosquito populations, correlations were 
weak or negative, regardless of CO₂ levels.  

Sanitation access consistently emerged as a protective factor across all analytical techniques, being negatively 
associated with malaria incidence, regardless of the country. Although these data-driven trends are clear, targeted field 
experiments are needed to uncover the biological mechanisms—particularly how emission-induced vegetation 
changes (Le et al., 2019) interact with vector life cycles. Future research will examine how CO₂ emissions influence 
malaria via (1) field studies comparing mosquito populations and malaria cases in high vs. low emission areas, and 
(2) lab experiments testing how elevated CO₂ affects mosquito breeding and survival. These experiments will validate 
model findings and guide integrated control strategies. 
 
5. Conclusion 
 

Overall, the findings revealed that malaria transmission in Africa was shaped by complex environmental and 
socioeconomic factors. CO₂ emissions are positively linked to incidence—especially in tropical regions like Cameroon 
and Gabon—while access to sanitation consistently reduces risk. Gradient Boosting models (R = 0.82) outperformed 
linear models by capturing non-linear patterns. Regional differences, particularly the higher burden in West/Central 
Africa, underscored the need for country-specific strategies. Effective malaria control under climate change will 
require integrated approaches combining emissions monitoring with improved sanitation. Further research should 
explore how CO₂ impacts vector ecology. 
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