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Abstract 

Blood clots, known as thrombi, can block blood vessels and lead to life-threatening conditions such as stroke and heart 
attack. Accurate assessment of thrombus thickness and elasticity is critical for early diagnosis and appropriate 
treatment. However, conventional ultrasound analysis often relies on single data types, limiting prediction accuracy. 
In this study, a deep learning model that integrates multiple types of ultrasound data is introduced to predict the 
thickness and elasticity of thrombi. The model utilizes time-domain ultrasound signals, frequency-domain images, 
and Doppler ultrasound data, each providing unique information about thrombus characteristics. These data streams 
are processed individually, and their features are combined to enhance prediction performance. Experimental results 
using a publicly available vascular ultrasound dataset demonstrate that the proposed multimodal approach 
significantly outperforms single-modality models. This study highlights the potential of multimodal deep learning to 
support more accurate and reliable detection of thrombus properties, contributing to improved clinical decision-
making in cardiovascular care. 
 
Keywords: Multimodal Deep Learning, Ultrasound Imaging, Thrombus Prediction, Convolutional Neural Network, 
Doppler Ultrasound 
 
1. Introduction 
 

Blood clots, medically known as thrombi, can form within blood vessels and obstruct normal blood flow, leading 
to life-threatening events such as stroke and heart attack. Precise measurement of thrombus thickness is critical 
because even submillimeter differences can alter shear stress on vessel walls, influencing the risk of clot propagation 
or embolization. Similarly, quantifying elasticity provides insight into the mechanical stability of the clot: softer, low-
elasticity thrombi are generally more responsive to pharmacological thrombolysis, whereas harder, high-elasticity 
clots often require mechanical intervention or surgery. Accurate assessment of these parameters therefore directly 
impacts clinical decision-making—guiding choices between anticoagulant therapy, catheter-directed thrombolysis, or 
surgical thrombectomy, and enabling personalized treatment plans that can reduce both procedural risks and long-
term complications. Ultrasound imaging is a widely used and non-invasive technique that delivers real-time 
visualization of internal body structures (Avola et al., 2021). Its safety, portability, and cost-effectiveness make it 
especially valuable in cardiovascular diagnostics, yet conventional ultrasound analysis typically relies on a single data 
modality and may therefore fail to capture the full complexity of thrombus properties. Recent advances in artificial 
intelligence have transformed medical image analysis, especially through Convolutional Neural Networks (CNNs), 
which automatically extract hierarchical features from raw data. While CNN-based methods have achieved impressive 
results in unimodal tasks, they remain limited when applied to heterogeneous biological structures such as blood clots. 
Multimodal learning—integrating complementary data streams—offers a promising solution by combining diverse 
information to achieve a more comprehensive understanding. 
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In this study, a deep learning framework that unites three ultrasound modalities is proposed: time-domain 
ultrasound signals that record echo amplitudes over time; frequency-domain images generated via the Fast Fourier 
Transform (FFT) to reveal spectral content; and Doppler ultrasound data converted into spectrograms using the Short-
Time Fourier Transform (STFT) to capture blood flow dynamics. Each modality is analyzed with a specialized CNN 
architecture to extract features tailored to its unique characteristics, and these features are then fused in fully connected 
layers to predict both thrombus thickness and elasticity. Our main contributions are threefold. First, we introduce a 
novel multimodal deep learning approach that synergistically combines time-domain signals, frequency-domain 
images, and Doppler data for enhanced thrombus characterization. Second, we design and optimize separate CNN 
architectures for each modality and develop an effective fusion strategy. Third, we validate our framework on a 
publicly available vascular ultrasound dataset with synthetic thrombi, demonstrating significant performance gains 
over single-modality models. The remainder of this paper is organized as follows: Section 2 reviews related work; 
Section 3 details the proposed methodology; Section 4 describes the experimental setup; Section 5 presents and 
discusses the results; and Section 6 concludes the study and suggests directions for future research.. 
 
2. Related Works 
 
2.1 Ultrasound Imaging and Thrombosis 
 

Ultrasound imaging is essential in diagnosing and managing thrombosis, offering a non-invasive and real-time 
method to visualize blood vessels and detect blood clots. By emitting high-frequency sound waves, ultrasound allows 
clinicians to assess both the structural and functional aspects of the vascular system. Techniques like B-mode imaging 
provide detailed views of vessel walls and potential thrombi, while Doppler ultrasound measures blood flow velocity 
and direction, enhancing the detection of abnormalities caused by clots. The combination of these methods enables 
accurate assessment of thrombus size, location, and impact on circulation, making ultrasound a vital tool in preventing 
and treating cardiovascular complications associated with thrombosis. 
 
Basic Principles of Ultrasound Technology and Medical Applications 

Ultrasound technology is widely used in medical applications due to its non-invasive, real-time imaging 
capabilities. The basic principle of ultrasound imaging involves the transmission of high-frequency sound waves into 
the body using a transducer. These sound waves interact with tissues and are reflected back to the transducer, where 
they are converted into electrical signals and processed to create an image. Ultrasound is particularly advantageous 
because it is safe for both the patient and the medical staff, as it does not use ionizing radiation like X-rays or CT 
scans. It is also relatively inexpensive and portable, making it accessible in various medical settings, including 
resource-limited areas. 

Medical applications of ultrasound are vast, with its use spanning from diagnostics to surgical guidance. 
Ultrasound is frequently employed in obstetrics for fetal imaging, providing crucial information on fetal health and 
development without exposing the mother or fetus to harmful radiation. Additionally, it is used for diagnosing 
conditions related to the heart (echocardiography), liver, kidneys, and thyroid, among other organs. In emergency 
medicine, ultrasound offers immediate feedback in critical situations such as trauma or when guiding procedures like 
needle biopsies or catheter placements. Despite its strengths, ultrasound imaging has limitations, such as susceptibility 
to noise and lower image resolution compared to MRI or CT scans, particularly in cases involving deeper or denser 
tissues. 
 
Measuring Vascular Thickness in Ultrasound Images 

Measuring vascular thickness, particularly through the assessment of carotid intima-media thickness (CIMT), is 
an essential tool in the prediction and prevention of cardiovascular diseases. CIMT measurement is done via ultrasound 
imaging, where the thickness of the two innermost layers of the carotid artery—the intima and media—is measured. 
This measurement is a widely recognized marker of atherosclerosis, a condition characterized by the buildup of 
plaques in the arterial walls, which leads to cardiovascular events such as heart attacks and strokes. 
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Ultrasound measurement of CIMT is non-invasive and provides real-time imaging, making it a valuable tool for 
assessing subclinical atherosclerosis in asymptomatic patients. The predictive value of CIMT has been further 
highlighted by studies that show its ability to enhance traditional risk scores, such as the Framingham Risk Score (Den 
Ruijter et al., 2012). Despite some debate regarding its routine clinical use, CIMT remains a crucial method in both 
research and clinical settings for identifying individuals at higher risk for cardiovascular events. 
 
Doppler Ultrasound 

Doppler ultrasound is a specialized technique used to measure the velocity and direction of blood flow within the 
body. It operates based on the Doppler effect, which describes the change in frequency of sound waves as they reflect 
off moving objects, such as red blood cells. When sound waves emitted by the ultrasound transducer encounter moving 
blood cells, the frequency of the returning waves changes depending on the speed and direction of blood flow. These 
frequency shifts are processed to create an image or graph, displaying flow patterns and providing quantitative 
measurements. 

Doppler ultrasound is used extensively in cardiovascular diagnostics, as it enables real-time visualization of blood 
flow and detection of abnormal patterns that may indicate conditions such as stenosis, thrombosis, or aneurysms. By 
measuring the velocity of blood flow, Doppler ultrasound can help assess the severity of vascular diseases, identify 
regions of turbulent flow, and determine the presence of occlusions or blockages. Its non-invasive nature, combined 
with the ability to provide dynamic information on blood movement, makes Doppler ultrasound a crucial tool in 
evaluating both arterial and venous systems. 
 
2.1 Artificial Intelligence and Healthcare 
 

Artificial Intelligence (AI) has shown significant promise in advancing medical image analysis, especially 
through deep learning techniques. Deep learning models, particularly CNNs, have been successfully applied to various 
medical imaging tasks such as disease diagnosis and image segmentation. For example, CNNs have been utilized in 
detecting diabetic retinopathy from retinal images and classifying skin lesions, achieving performance on par with 
human specialists. These models are particularly effective because they automatically extract and learn features from 
raw image data, bypassing the need for manual feature engineering, which is typically required in traditional image 
processing approaches. Moreover, AI models have been applied to MRI and CT scans for conditions such as 
Alzheimer's and breast cancer, demonstrating improved accuracy and efficiency compared to manual diagnosis 
(Miotto et al., 2018). 
 
2.2 What is Multimodal Data? 

 
Multimodal data refers to the integration of data from different modalities, such as text, images, audio, and video, 

to extract complementary information for more comprehensive analysis. In healthcare, multimodal data is particularly 
important because it allows combining various types of clinical and patient data, which can improve the accuracy and 
performance of applications, such as diagnosis, treatment recommendations, and patient monitoring. Each modality 
provides unique information that, when fused with other data types, offers a more holistic view of the patient's health 
condition. For instance, in speech recognition, both the audio signals and visual data related to lip and mouth 
movements can provide valuable complementary insights. Multimodal data enables healthcare systems to better 
understand complex relationships between various data points, thus allowing for more effective decision-making. 
Deep learning methods have become a solution for handling such multimodal data, automatically extracting and 
learning representations from different modalities without manual feature engineering, which improves the 
performance of healthcare applications (Tobón et al., 2022). 
 
2.3 Thrombosis and Cardiovascular Diseases 
 
What is Thrombosis? 

Thrombosis is the formation of a blood clot within a blood vessel, which can obstruct the flow of blood through 
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the circulatory system. This process can occur in arteries or veins and is triggered by factors such as injury to the 
vessel wall, sluggish blood flow, or conditions that increase clotting. Platelets and clotting proteins work together to 
form clots that can either resolve naturally or lead to serious complications if they block blood flow to vital organs. 
For example, arterial thrombosis can result in heart attacks or strokes, while venous thrombosis, such as deep vein 
thrombosis, can cause pain and swelling, and may lead to life-threatening pulmonary embolism if the clot travels to 
the lungs (Violi et al., 2020). 

 
The Importance of Basic Ultrasound Examinations for Cardiovascular Disease Prevention 

The importance of basic ultrasound examinations, particularly carotid ultrasound, for cardiovascular disease 
prevention lies in its ability to detect subclinical atherosclerosis, which is strongly linked to an increased risk of 
cardiovascular events. Carotid ultrasound enables the measurement of CIMT and the detection of atherosclerotic 
plaques. These indicators are valuable in assessing the atherosclerotic burden, especially in patients who appear 
asymptomatic. Approximately 40-80% of apparently healthy individuals may show increased CIMT or plaque 
formation, which are associated with a higher likelihood of future cardiovascular complications. 

Ultrasound examinations offer a safe, non-invasive, and cost-effective method for early detection of 
cardiovascular risks, making them a useful tool in preventive strategies. They can particularly benefit patients in the 
low-to-intermediate cardiovascular risk category, where the presence of carotid abnormalities might prompt more 
aggressive prevention measures, such as lifestyle changes or pharmacological intervention. Despite their potential, 
carotid ultrasounds are underutilized in clinical practice, often due to inconsistent guidelines and varying 
interpretations of CIMT measurements. However, when incorporated with other risk factors, these examinations can 
provide clinically relevant information that may lead to better patient outcomes (Ray et al., 2015). 
 

3. Methodology 
 
The proposed multimodal deep learning model aims to predict thrombus thickness and elasticity by integrating 

multiple data modalities: 1D LGFU signals, 2D frequency spectrum data, and Doppler ultrasound data. Each modality 
provides unique and complementary information—1D signals capture temporal dynamics, 2D spectra offer 
morphological insights, and Doppler data provides flow-related characteristics. By combining these features, the 
model aims to improve both classification of thrombus size and regression of elasticity, supporting more accurate and 
personalized medical decisions. As shown in Figure 1, the overall architecture of the model is illustrated, and Figure 
2 presents the pseudocode for the proposed method. Before outlining our specific objectives, several key technical 
terms are defined for use throughout this work. Laser‐Generated Focused Ultrasound (LGFU) refers to a technique in 
which a pulsed laser induces thermoelastic expansion in a target medium, producing highly focused ultrasound waves 
that capture fine temporal variations in thrombus microstructure. The Fast Fourier Transform (FFT) is a computational 
method that converts time‐domain ultrasound signals into two‐dimensional frequency‐domain images, highlighting 
morphological patterns such as layer boundaries and texture heterogeneities. The Short‐Time Fourier Transform 
(STFT) extends FFT by applying it over short, overlapping time windows to generate spectrograms, which visualize 
how frequency content evolves over time and are especially informative of flow dynamics in Doppler data. A 
spectrogram thus represents signal power as a function of both time and frequency, enabling our model to learn 
features related to blood‐flow disturbances and clot elasticity. 
 
3.1 Study Objectives and Hypotheses 
 

The primary objective of this study is to develop and validate a multimodal deep learning framework that 
integrates 1D ultrasound signals, frequency‐domain images, and Doppler data to accurately predict thrombus thickness 
and elasticity. It is hypothesized that: (1) Temporal features derived from raw 1D ultrasound signals will lead to 
improved accuracy in classifying thrombus thickness. (2) Spectral characteristics obtained from FFT-generated 
images will enhance the morphological characterization of thrombi. (3) Hemodynamic information extracted from 
STFT-based Doppler spectrograms will yield more precise elasticity predictions. 
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3.2 Data Description 
 

The three ultrasound modalities were selected to capture complementary aspects of thrombus characteristics. First, 
time-domain ultrasound signals record raw echo amplitudes over time, providing high-resolution temporal information 
about tissue interfaces; these signals are sensitive to microstructural variations that directly relate to thrombus 
thickness. Second, frequency-domain images, obtained via the Fast Fourier Transform (FFT), reveal spectral patterns 
and harmonic content that emphasize morphological features of the clot, such as layer boundaries and compositional 
heterogeneities. Third, Doppler ultrasound data, converted into time–frequency spectrograms using the Short-Time 
Fourier Transform (STFT), characterize blood flow dynamics around the thrombus, supplying critical information 
about mechanical elasticity and flow obstruction. By integrating these three data streams, the model leverages temporal, 
spectral, and hemodynamic signatures to improve both thickness classification and elasticity regression. 
 
Laser-Generated Focused Ultrasound (LGFU) 

LGFU is an advanced ultrasound technique that utilizes laser-induced thermoelastic expansion to generate highly 
focused ultrasound waves. This method involves directing a high-energy laser pulse onto a small, targeted area of a 
medium, typically a tissue-mimicking phantom or biological tissue. The rapid absorption of laser energy leads to 
localized heating and expansion, producing an acoustic wave that propagates through the medium. LGFU is unique in 
its ability to generate high-frequency ultrasound pulses with extremely narrow beam widths, allowing for precise 
imaging and measurement at microscopic scales. 

In the context of thrombus characterization, LGFU offers several advantages over conventional ultrasound 
methods. Its high spatial resolution enables the detection of minute variations in thrombus structure and thickness, 
which may be critical for accurately 
predicting clot elasticity and stability. 
Moreover, LGFU can be used to 
produce tailored ultrasound pulses 
with specific frequencies, making it 
possible to selectively target and 
analyze different tissue layers within 
the thrombus. By integrating LGFU-
generated signals with other 
ultrasound modalities, the proposed 
multimodal deep learning model can 
achieve enhanced performance in 
predicting thrombus properties, 
offering a more comprehensive 
assessment of clot formation and risk factors. 
 
1-D Ultrasound Signal 

In ultrasound imaging, a 1-D ultrasound signal, also known as the raw signal, represents the amplitude of sound 
waves that are reflected back from various tissues and structures within the body. This signal is typically a time-
domain representation, showing the variations in echo intensity as a function of time. In the context of thrombus 
prediction, analyzing the 1-D signal provides valuable information about the acoustic properties of the tissue layers 
within the blood vessels, including reflections caused by thrombi. 

For the proposed model, the 1-D ultrasound signal will serve as the initial input for the deep learning architecture. 
The signal will undergo preprocessing steps, including noise reduction and normalization, to ensure that it is clean 
and ready for feature extraction. 
 
2-D Frequency-Domain Image 

The 2-D frequency-domain image, obtained by performing a Fourier transform on the 1-D signal, represents the 

 
Figure 1. Schematic Diagram for Proposed Method 
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frequency components of the ultrasound signal. This transformation shifts the data from the time domain to the 
frequency domain, where it becomes easier to identify periodic patterns and structures that may be obscured in the 
raw signal. In the case of thrombus detection, specific frequency signatures might correspond to different tissue 
characteristics or thrombus formations. 

 

In the proposed model, the 2-D frequency-
domain images will be treated as another 
modality in the multimodal framework. 
Convolutional neural networks (CNNs) will be 
employed to extract spatial features from these 
images. The CNN architecture will detect 
patterns and features in the frequency domain, 
such as variations in harmonic content or shifts 
in dominant frequencies, which can be linked to 
changes in thrombus structure or thickness. 
These extracted features will then be integrated 
with the temporal features from the 1-D 
ultrasound signal in a multimodal learning setup 
to improve the overall accuracy of thrombus 
thickness prediction. 
 
Doppler Ultrasound Data 

Doppler ultrasound data provide critical 
insights into blood flow dynamics, including 

speed, direction, and turbulence. For this study, Doppler data will be incorporated into the multimodal learning 
framework to predict thrombus elasticity, as it reflects the mechanical properties of the clot and surrounding blood 
vessels. Doppler data are represented as a series of time-frequency maps, capturing changes in blood flow over time 
and highlighting regions of altered hemodynamics caused by thrombi. 

To preprocess the Doppler ultrasound data, the raw Doppler signals are first converted into spectrograms using 
short-time Fourier transforms (STFT). The resulting spectrograms are then filtered to remove noise and enhance key 
flow patterns related to thrombus presence and elasticity. The processed Doppler data will be used as an additional 
modality in the proposed deep learning architecture, complementing the temporal and spatial features extracted from 
the 1-D and 2-D ultrasound inputs. By incorporating Doppler information, the model aims to improve its ability to 
differentiate between stable and unstable thrombin, providing a more accurate prediction of thrombus behavior in 
various clinical scenarios. 
 
3.3 Data Source and Processing 
 

The ultrasound data used in this study were derived from the Mus-V: Multimodal Ultrasound Vascular 
Segmentation dataset(Geng et al., 2024) available on Kaggle. This dataset provides multimodal ultrasound images, 
including vascular structures, with detailed annotations. For this study, synthetic blood clot data were simulated based 
on the vascular ultrasound images in the dataset. Blood clots were categorized into varying thickness ranges, from 
under 100 μm to over 1000 μm, to mimic realistic clinical scenarios. Ultrasound signals and images from the dataset 
were processed to serve as input for the LGFU-based analysis. 

• 1D Ultrasound Signal Data: The raw time-domain ultrasound signal was processed to remove noise and 
enhance key features related to blood clot thickness. The processed signals were then used as input for the 
deep learning model. 

• 2D Frequency Spectrum Data: A FFT was applied to convert the 1D signal into a 2D frequency spectrum, 
which provided additional information about the signal's spectral characteristics. This transformed data was 

 
Figure 2. Pseudocode for Proposed Method 



Vol. 2025 (11) 904 – 913 
ISSN 2688-3651 [online] 

910 

used as input for the 2D portion of the multi-modal model. 
• Doppler ultrasound data : Signals were collected to capture information about blood flow velocity and 

direction, which are affected by the presence and elasticity of thrombi. The raw Doppler data underwent 
preprocessing steps, including noise reduction using filters and normalization to ensure consistency across 
samples. A  

• STFT was applied to generate spectrograms representing the Doppler data in the time-frequency domain. 
These spectrograms highlighted dynamic flow patterns and were used as input for the Doppler-specific CNN 
component of the model. 

 
3.4 Model Architecture 
 

The proposed multimodal model consists of three parallel convolutional neural network (CNN) branches—one 
for each ultrasound modality—followed by a feature‐fusion stage and final prediction layers. By combining temporal 
cues from the 1D branch, morphological insights from the 2D FFT branch, and hemodynamic signatures from the 
Doppler branch, the model delivers superior performance to any single‐modality counterpart. 

• 1D Signal Processing: A 1D CNN processes raw time‐domain ultrasound signals to extract temporal features 
related to thrombus structure. This branch comprises four convolutional layers with ReLU activations, each 
followed by average pooling to progressively reduce dimensionality. The resulting feature map is flattened 
into a vector of size 64×7. 

• 2D Frequency‐Domain Image Processing: After applying the Fast Fourier Transform (FFT) to convert the 
1D signals into 2D frequency‐domain images, a 2D CNN extracts spatial and spectral patterns. This network 
includes three convolutional layers (each with ReLU activation and pooling), producing a 321‐dimensional 
feature vector. 

• Doppler Ultrasound Processing: Doppler data are first converted into time–frequency spectrograms via the 
Short-Time Fourier Transform (STFT). A specialized 2D CNN branch—with three convolutional layers 
(ReLU + max‐pooling)—then captures dynamic flow features indicative of clot elasticity. The final Doppler 
branch outputs a 1,024‐dimensional feature vector. 

• Multi-Modal Fusion and Prediction: The three feature vectors are concatenated and passed through fully 
connected layers with Batch Normalization and Dropout to prevent overfitting. For thickness classification, 
a softmax output layer maps to the predefined size categories. For elasticity prediction, a separate regression 
head outputs a continuous Young’s modulus estimate. 

 
3.5 Evaluation Metrics 
 
Accuracy and F1-Score for Thickness Prediction 

High-frequency vascular ultrasound systems (12–15 MHz) achieve an axial resolution on the order of one-tenth 
of a millimeter, so thrombi smaller than 0.1 mm approach the physical limits of reliable detection and are most 
appropriately classified as “small” for monitoring only. Thrombi between 0.1 mm and 1 mm represent a clinically 
significant intermediate range in which shear stress on the vessel wall may increase abruptly, elevating the risk of 
symptom onset; these “medium” thrombi typically prompt anticoagulant therapy or additional imaging follow-up. 
Lesions exceeding 1 mm are large enough to pose a substantial embolic and flow-obstruction risk, and thus warrant 
consideration of catheter-directed thrombolysis or surgical thrombectomy rather than conservative management. 

The prediction of thrombus thickness is treated as a classification problem. This approach aligns with how 
thrombus size is interpreted in clinical practice, where size is categorized into distinct ranges such as small, medium, 
or large. These discrete categories simplify treatment decisions, enabling medical professionals to act quickly and 
effectively based on well-established thresholds. For example: 

• Small thrombus(~0.1mm): May only require monitoring. 
• Medium thrombus(0.1mm~1mm): Could call for medication or further diagnostic imaging. 
• Large thrombus(1mm~): Likely requires surgical intervention. 
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Since thrombus size does not require continuous measurements for clinical use, a classification model ensures 
predictions are aligned with actionable medical outcomes. This method is preferred because it reduces ambiguity in 
treatment protocols by mapping predictions to predefined size categories. 
 
Root Mean Square (RMS) for Elasticity Prediction 

The prediction of thrombus elasticity is handled as a regression problem. Unlike size, which can be discretized, 
elasticity represents a continuous variable that reflects the thrombus's mechanical properties, such as Young’s 
Modulus or Shear Modulus. These properties vary along a spectrum and are crucial for determining the appropriate 
treatment approach. For example: 

• Lower elasticity (soft thrombus): More likely to dissolve with medication. 
• Higher elasticity (hard thrombus): Less responsive to medication, may require surgical removal. 
Predicting elasticity through regression provides precise values, ensuring that the medical decisions are tailored 

to the specific mechanical state of the thrombus. This precision aids in personalized treatment planning and offers 
better outcomes than classification would, as it avoids oversimplification. By using both classification for size and 
regression for elasticity, the model ensures that each aspect of thrombus prediction is optimized for clinical relevance 
and decision-making accuracy. 
 
4. Result  
 

In this section, we present the analysis of the results for thrombus thickness (classification) and elasticity 
(regression) predictions using the multi-modal deep learning model. We compare the proposed model’s performance 
with baseline models to demonstrate the effectiveness of multi-modal integration. 
 
4.1 Thickness Prediction 
 
Proposed Model Performance 

As shown in Table 1, the 
proposed multi-modal CNN, 
which integrates 1D LGFU 
signals, 2D frequency spectrum, 
and Doppler data, achieves the 
highest performance with an 
accuracy of 0.853 and an F1-
score of 0.828. This result highlights the effectiveness of combining multiple modalities for capturing more 
comprehensive thrombus features. 
 
Baseline Comparison 

Among the individual models, the 2D spectrum model achieves the highest performance, suggesting that spectral 
images provide more morphological information. In contrast, the Doppler-only model achieves lower performance, 
as Doppler data primarily captures flow dynamics, which may not be sufficient for accurate thickness classification. 

 
4.2. Elasticity Prediction 
 
Proposed Model Performance 

 As shown in Table 2, the multi-modal CNN achieves 
the best RMSE of 0.854 kPa, demonstrating the value of 
combining multiple modalities to predict elasticity more 
accurately. Integrating LGFU, spectral, and Doppler data 

enables the model to leverage both morphological and flow-related features for precise predictions. 
 

Table 1. Thrombus Thickness Prediction Results 
Model Accuracy F1-Score Recall Precision 
1D CNN(LGFU only) 0.700 0.682 0.660 0.710 
2D CNN(Spectrum only) 0.780 0.738 0.750 0.730 
Doppler-only CNN 0.652 0.664 0.670 0.655 
Proposed Multi-modal CNN 0.853 0.828 0.840 0.821 

Table 2. Thrombus Elasticity Prediction Results 

Model RMSE(kPa) 
1D CNN(LGFU only) 1.250 

2D CNN(Spectrum only) 1.153 
Doppler-only CNN 1.102 

Proposed Multi-modal CNN 0.854 
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Baseline Comparison 
The Doppler-only model achieves a better RMSE than the LGFU-only and Spectrum-only models, as Doppler 

ultrasound provides direct insight into blood flow and tissue elasticity. However, the multi-modal model outperforms 
all individual models, highlighting the benefit of combining complementary information from multiple sources. As 
shown in Figure 3, the ROC curves confirm that the multimodal 
approach yields the highest area under the curve across all 
thrombus size classes. The multi-modal model achieves an 
accuracy of 0.853 and an F1-score of 0.828, outperforming the 
individual models, and also achieves the best RMSE of 0.854 
kPa, indicating its ability to predict thrombus elasticity with high 
precision. These results demonstrate the advantage of 
integrating 1D LGFU signals, 2D spectral data, and Doppler 
ultrasound data, providing better performance in both 
classification and regression tasks. 
 
5. Discussion 
 

The results confirm the effectiveness of the proposed 
multimodal deep learning model. By integrating temporal, 
spectral, and hemodynamic features, the model achieved an 
accuracy of 0.853 and an F1-score of 0.828 for thickness 
classification, as well as an RMSE of 0.854 kPa for elasticity regression—each a statistically significant improvement 
over single-modality baseline. Clinically, these improvements translate into more reliable decision support. The 
enhanced thickness classification can help clinicians distinguish small, medium, and large thrombi with greater 
confidence, guiding whether to monitor, administer anticoagulants, or pursue interventional therapy. Likewise, the 
refined elasticity predictions enable better assessment of clot stability: softer clots (low predicted elasticity) can be 
managed pharmacologically, while harder clots (high predicted elasticity) may be flagged for more aggressive 
mechanical removal. Modality-specific insights explain these gains. Frequency-domain features (FFT images) yielded 
the largest single-modality boost in thickness classification (accuracy 0.780) because they emphasize morphological 
boundaries that correlate strongly with clot size. Doppler data performed best among single modalities for elasticity 
(RMSE = 1.102 kPa), reflecting its sensitivity to flow disturbances caused by stiff versus soft thrombi. The 1D 
ultrasound signals, while less discriminative on their own (accuracy 0.700, RMSE = 1.250 kPa), contribute fine 
temporal resolution that, when fused, sharpen both classification and regression outputs. Taken together, the 
multimodal fusion leverages each data stream’s strengths: FFT-derived morphology anchors size predictions, 
Doppler-derived hemodynamics anchor elasticity predictions, and raw time-domain signals fill in the intermediate 
temporal patterns. This complementary synergy leads to robust performance across clinically relevant tasks. Future 
work should statistically validate these findings on patient-derived clinical datasets and investigate how additional 
modalities—such as patient metadata or alternative imaging techniques—could further improve predictive power and 
generalizability. 
 
6. Conclusion 
 

A multi-modal deep learning model was developed that integrates 1D LGFU signals, 2D frequency spectrum data, 
and Doppler ultrasound data to predict thrombus thickness and elasticity. Each data modality provides unique and 
complementary information that, when combined, gives a more complete understanding of thrombus characteristics. 
Specifically, 1D signals capture temporal dynamics, allowing for insights into periodic and frequency-based attributes, 
while 2D spectra offer morphological insights, capturing shape and structure critical for understanding thrombus size 
and composition. Doppler data contributes flow-related characteristics, revealing changes in blood flow around the 
thrombus, which may be indicative of specific thrombus elasticity and blockage levels. 

 
Figure 3. Comparison of ROC Curves for 1D CNN, 
2D CNN, 2D Doppler, and a Multimodal Model 
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By merging these distinct types of data, enhanced prediction accuracy was achieved for both classification and 
regression tasks, supporting more accurate and tailored clinical decisions. Furthermore, FFT and STFT techniques 
were employed to process each modality, allowing frequency information to be captured in both static and dynamic 
contexts. FFT was applied to the 1D signals to analyze overall frequency content, while STFT was used with Doppler 
data to monitor changes over time, enabling a more comprehensive view of thrombus characteristics. 

The results demonstrate that combining these data modalities significantly improves prediction performance 
compared to single-modality models. This outcome highlights the clear advantage of multimodal integration in 
complex medical prediction tasks, as the combined modalities provide a richer set of features that enhance accuracy 
and robustness. This approach underscores the potential of multimodal deep learning in medical diagnostics, 
particularly in situations where reliance on a single data type may yield an incomplete understanding. 

In summary, the findings from this study support the use of multi-modal models for improving thrombus 
prediction accuracy. The success of this approach offers promising directions for future research, where integrating 
additional data sources, such as clinical metadata or patient history, could further strengthen prediction capabilities 
and contribute to the development of personalized, data-driven clinical applications. 

Future work could focus on incorporating clinical metadata alongside multi-modal ultrasound data to enable more 
personalized thrombus predictions, tailoring the model to individual patient profiles. Additionally, integrating 
advanced techniques like transformers could enhance the model’s ability to capture complex interactions between 
different modalities, improving prediction accuracy and robustness. Expanding the model’s application to include 
other vascular conditions, such as plaque formation or arterial stiffness, could further broaden its clinical utility and 
impact. 
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